MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsncan Structured version   Unicode version

Theorem domunsncan 7654
Description: A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypotheses
Ref Expression
domunsncan.a  |-  A  e. 
_V
domunsncan.b  |-  B  e. 
_V
Assertion
Ref Expression
domunsncan  |-  ( ( -.  A  e.  X  /\  -.  B  e.  Y
)  ->  ( ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )  <->  X  ~<_  Y ) )

Proof of Theorem domunsncan
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ssun2 3606 . . . 4  |-  Y  C_  ( { B }  u.  Y )
2 reldom 7559 . . . . . 6  |-  Rel  ~<_
32brrelex2i 4864 . . . . 5  |-  ( ( { A }  u.  X )  ~<_  ( { B }  u.  Y
)  ->  ( { B }  u.  Y
)  e.  _V )
43adantl 464 . . . 4  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )
)  ->  ( { B }  u.  Y
)  e.  _V )
5 ssexg 4539 . . . 4  |-  ( ( Y  C_  ( { B }  u.  Y
)  /\  ( { B }  u.  Y
)  e.  _V )  ->  Y  e.  _V )
61, 4, 5sylancr 661 . . 3  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )
)  ->  Y  e.  _V )
7 brdomi 7564 . . . . 5  |-  ( ( { A }  u.  X )  ~<_  ( { B }  u.  Y
)  ->  E. f 
f : ( { A }  u.  X
) -1-1-> ( { B }  u.  Y )
)
8 vex 3061 . . . . . . . . . . 11  |-  f  e. 
_V
98resex 5136 . . . . . . . . . 10  |-  ( f  |`  ( ( { A }  u.  X )  \  { A } ) )  e.  _V
10 simprr 758 . . . . . . . . . . 11  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y
) )
11 difss 3569 . . . . . . . . . . 11  |-  ( ( { A }  u.  X )  \  { A } )  C_  ( { A }  u.  X
)
12 f1ores 5812 . . . . . . . . . . 11  |-  ( ( f : ( { A }  u.  X
) -1-1-> ( { B }  u.  Y )  /\  ( ( { A }  u.  X )  \  { A } ) 
C_  ( { A }  u.  X )
)  ->  ( f  |`  ( ( { A }  u.  X )  \  { A } ) ) : ( ( { A }  u.  X )  \  { A } ) -1-1-onto-> ( f " (
( { A }  u.  X )  \  { A } ) ) )
1310, 11, 12sylancl 660 . . . . . . . . . 10  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( f  |`  ( ( { A }  u.  X )  \  { A } ) ) : ( ( { A }  u.  X )  \  { A } ) -1-1-onto-> ( f " (
( { A }  u.  X )  \  { A } ) ) )
14 f1oen3g 7568 . . . . . . . . . 10  |-  ( ( ( f  |`  (
( { A }  u.  X )  \  { A } ) )  e. 
_V  /\  ( f  |`  ( ( { A }  u.  X )  \  { A } ) ) : ( ( { A }  u.  X )  \  { A } ) -1-1-onto-> ( f " (
( { A }  u.  X )  \  { A } ) ) )  ->  ( ( { A }  u.  X
)  \  { A } )  ~~  (
f " ( ( { A }  u.  X )  \  { A } ) ) )
159, 13, 14sylancr 661 . . . . . . . . 9  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { A }  u.  X
)  \  { A } )  ~~  (
f " ( ( { A }  u.  X )  \  { A } ) ) )
16 df-f1 5573 . . . . . . . . . . . . 13  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  <->  ( f : ( { A }  u.  X ) --> ( { B }  u.  Y )  /\  Fun  `' f ) )
1716simprbi 462 . . . . . . . . . . . 12  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  Fun  `' f )
18 imadif 5643 . . . . . . . . . . . 12  |-  ( Fun  `' f  ->  ( f
" ( ( { A }  u.  X
)  \  { A } ) )  =  ( ( f "
( { A }  u.  X ) )  \ 
( f " { A } ) ) )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  (
f " ( ( { A }  u.  X )  \  { A } ) )  =  ( ( f "
( { A }  u.  X ) )  \ 
( f " { A } ) ) )
2019ad2antll 727 . . . . . . . . . 10  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( f "
( ( { A }  u.  X )  \  { A } ) )  =  ( ( f " ( { A }  u.  X
) )  \  (
f " { A } ) ) )
21 snex 4631 . . . . . . . . . . . . . 14  |-  { B }  e.  _V
22 simprl 756 . . . . . . . . . . . . . 14  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  Y  e.  _V )
23 unexg 6582 . . . . . . . . . . . . . 14  |-  ( ( { B }  e.  _V  /\  Y  e.  _V )  ->  ( { B }  u.  Y )  e.  _V )
2421, 22, 23sylancr 661 . . . . . . . . . . . . 13  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( { B }  u.  Y )  e.  _V )
25 difexg 4541 . . . . . . . . . . . . 13  |-  ( ( { B }  u.  Y )  e.  _V  ->  ( ( { B }  u.  Y )  \  { ( f `  A ) } )  e.  _V )
2624, 25syl 17 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { B }  u.  Y
)  \  { (
f `  A ) } )  e.  _V )
27 f1f 5763 . . . . . . . . . . . . . . . 16  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  f : ( { A }  u.  X ) --> ( { B }  u.  Y ) )
28 imassrn 5167 . . . . . . . . . . . . . . . . 17  |-  ( f
" ( { A }  u.  X )
)  C_  ran  f
29 frn 5719 . . . . . . . . . . . . . . . . 17  |-  ( f : ( { A }  u.  X ) --> ( { B }  u.  Y )  ->  ran  f  C_  ( { B }  u.  Y )
)
3028, 29syl5ss 3452 . . . . . . . . . . . . . . . 16  |-  ( f : ( { A }  u.  X ) --> ( { B }  u.  Y )  ->  (
f " ( { A }  u.  X
) )  C_  ( { B }  u.  Y
) )
3127, 30syl 17 . . . . . . . . . . . . . . 15  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  (
f " ( { A }  u.  X
) )  C_  ( { B }  u.  Y
) )
3231ad2antll 727 . . . . . . . . . . . . . 14  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( f "
( { A }  u.  X ) )  C_  ( { B }  u.  Y ) )
3332ssdifd 3578 . . . . . . . . . . . . 13  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( f
" ( { A }  u.  X )
)  \  ( f " { A } ) )  C_  ( ( { B }  u.  Y
)  \  ( f " { A } ) ) )
34 f1fn 5764 . . . . . . . . . . . . . . . 16  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  f  Fn  ( { A }  u.  X ) )
3534ad2antll 727 . . . . . . . . . . . . . . 15  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  f  Fn  ( { A }  u.  X
) )
36 domunsncan.a . . . . . . . . . . . . . . . . 17  |-  A  e. 
_V
3736snid 3999 . . . . . . . . . . . . . . . 16  |-  A  e. 
{ A }
38 elun1 3609 . . . . . . . . . . . . . . . 16  |-  ( A  e.  { A }  ->  A  e.  ( { A }  u.  X
) )
3937, 38ax-mp 5 . . . . . . . . . . . . . . 15  |-  A  e.  ( { A }  u.  X )
40 fnsnfv 5908 . . . . . . . . . . . . . . 15  |-  ( ( f  Fn  ( { A }  u.  X
)  /\  A  e.  ( { A }  u.  X ) )  ->  { ( f `  A ) }  =  ( f " { A } ) )
4135, 39, 40sylancl 660 . . . . . . . . . . . . . 14  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  { ( f `
 A ) }  =  ( f " { A } ) )
4241difeq2d 3560 . . . . . . . . . . . . 13  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { B }  u.  Y
)  \  { (
f `  A ) } )  =  ( ( { B }  u.  Y )  \  (
f " { A } ) ) )
4333, 42sseqtr4d 3478 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( f
" ( { A }  u.  X )
)  \  ( f " { A } ) )  C_  ( ( { B }  u.  Y
)  \  { (
f `  A ) } ) )
44 ssdomg 7598 . . . . . . . . . . . 12  |-  ( ( ( { B }  u.  Y )  \  {
( f `  A
) } )  e. 
_V  ->  ( ( ( f " ( { A }  u.  X
) )  \  (
f " { A } ) )  C_  ( ( { B }  u.  Y )  \  { ( f `  A ) } )  ->  ( ( f
" ( { A }  u.  X )
)  \  ( f " { A } ) )  ~<_  ( ( { B }  u.  Y
)  \  { (
f `  A ) } ) ) )
4526, 43, 44sylc 59 . . . . . . . . . . 11  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( f
" ( { A }  u.  X )
)  \  ( f " { A } ) )  ~<_  ( ( { B }  u.  Y
)  \  { (
f `  A ) } ) )
46 ffvelrn 6006 . . . . . . . . . . . . . 14  |-  ( ( f : ( { A }  u.  X
) --> ( { B }  u.  Y )  /\  A  e.  ( { A }  u.  X
) )  ->  (
f `  A )  e.  ( { B }  u.  Y ) )
4727, 39, 46sylancl 660 . . . . . . . . . . . . 13  |-  ( f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y )  ->  (
f `  A )  e.  ( { B }  u.  Y ) )
4847ad2antll 727 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( f `  A )  e.  ( { B }  u.  Y ) )
49 domunsncan.b . . . . . . . . . . . . . 14  |-  B  e. 
_V
5049snid 3999 . . . . . . . . . . . . 13  |-  B  e. 
{ B }
51 elun1 3609 . . . . . . . . . . . . 13  |-  ( B  e.  { B }  ->  B  e.  ( { B }  u.  Y
) )
5250, 51mp1i 13 . . . . . . . . . . . 12  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  B  e.  ( { B }  u.  Y ) )
53 difsnen 7636 . . . . . . . . . . . 12  |-  ( ( ( { B }  u.  Y )  e.  _V  /\  ( f `  A
)  e.  ( { B }  u.  Y
)  /\  B  e.  ( { B }  u.  Y ) )  -> 
( ( { B }  u.  Y )  \  { ( f `  A ) } ) 
~~  ( ( { B }  u.  Y
)  \  { B } ) )
5424, 48, 52, 53syl3anc 1230 . . . . . . . . . . 11  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { B }  u.  Y
)  \  { (
f `  A ) } )  ~~  (
( { B }  u.  Y )  \  { B } ) )
55 domentr 7611 . . . . . . . . . . 11  |-  ( ( ( ( f "
( { A }  u.  X ) )  \ 
( f " { A } ) )  ~<_  ( ( { B }  u.  Y )  \  {
( f `  A
) } )  /\  ( ( { B }  u.  Y )  \  { ( f `  A ) } ) 
~~  ( ( { B }  u.  Y
)  \  { B } ) )  -> 
( ( f "
( { A }  u.  X ) )  \ 
( f " { A } ) )  ~<_  ( ( { B }  u.  Y )  \  { B } ) )
5645, 54, 55syl2anc 659 . . . . . . . . . 10  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( f
" ( { A }  u.  X )
)  \  ( f " { A } ) )  ~<_  ( ( { B }  u.  Y
)  \  { B } ) )
5720, 56eqbrtrd 4414 . . . . . . . . 9  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( f "
( ( { A }  u.  X )  \  { A } ) )  ~<_  ( ( { B }  u.  Y
)  \  { B } ) )
58 endomtr 7610 . . . . . . . . 9  |-  ( ( ( ( { A }  u.  X )  \  { A } ) 
~~  ( f "
( ( { A }  u.  X )  \  { A } ) )  /\  ( f
" ( ( { A }  u.  X
)  \  { A } ) )  ~<_  ( ( { B }  u.  Y )  \  { B } ) )  -> 
( ( { A }  u.  X )  \  { A } )  ~<_  ( ( { B }  u.  Y )  \  { B } ) )
5915, 57, 58syl2anc 659 . . . . . . . 8  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { A }  u.  X
)  \  { A } )  ~<_  ( ( { B }  u.  Y )  \  { B } ) )
60 uncom 3586 . . . . . . . . . . . 12  |-  ( { A }  u.  X
)  =  ( X  u.  { A }
)
6160difeq1i 3556 . . . . . . . . . . 11  |-  ( ( { A }  u.  X )  \  { A } )  =  ( ( X  u.  { A } )  \  { A } )
62 difun2 3850 . . . . . . . . . . 11  |-  ( ( X  u.  { A } )  \  { A } )  =  ( X  \  { A } )
6361, 62eqtri 2431 . . . . . . . . . 10  |-  ( ( { A }  u.  X )  \  { A } )  =  ( X  \  { A } )
64 difsn 4105 . . . . . . . . . 10  |-  ( -.  A  e.  X  -> 
( X  \  { A } )  =  X )
6563, 64syl5eq 2455 . . . . . . . . 9  |-  ( -.  A  e.  X  -> 
( ( { A }  u.  X )  \  { A } )  =  X )
6665ad2antrr 724 . . . . . . . 8  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { A }  u.  X
)  \  { A } )  =  X )
67 uncom 3586 . . . . . . . . . . . 12  |-  ( { B }  u.  Y
)  =  ( Y  u.  { B }
)
6867difeq1i 3556 . . . . . . . . . . 11  |-  ( ( { B }  u.  Y )  \  { B } )  =  ( ( Y  u.  { B } )  \  { B } )
69 difun2 3850 . . . . . . . . . . 11  |-  ( ( Y  u.  { B } )  \  { B } )  =  ( Y  \  { B } )
7068, 69eqtri 2431 . . . . . . . . . 10  |-  ( ( { B }  u.  Y )  \  { B } )  =  ( Y  \  { B } )
71 difsn 4105 . . . . . . . . . 10  |-  ( -.  B  e.  Y  -> 
( Y  \  { B } )  =  Y )
7270, 71syl5eq 2455 . . . . . . . . 9  |-  ( -.  B  e.  Y  -> 
( ( { B }  u.  Y )  \  { B } )  =  Y )
7372ad2antlr 725 . . . . . . . 8  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  ( ( { B }  u.  Y
)  \  { B } )  =  Y )
7459, 66, 733brtr3d 4423 . . . . . . 7  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( Y  e.  _V  /\  f : ( { A }  u.  X ) -1-1-> ( { B }  u.  Y ) ) )  ->  X  ~<_  Y )
7574expr 613 . . . . . 6  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  Y  e.  _V )  ->  (
f : ( { A }  u.  X
) -1-1-> ( { B }  u.  Y )  ->  X  ~<_  Y ) )
7675exlimdv 1745 . . . . 5  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  Y  e.  _V )  ->  ( E. f  f :
( { A }  u.  X ) -1-1-> ( { B }  u.  Y
)  ->  X  ~<_  Y ) )
777, 76syl5 30 . . . 4  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  Y  e.  _V )  ->  (
( { A }  u.  X )  ~<_  ( { B }  u.  Y
)  ->  X  ~<_  Y ) )
7877impancom 438 . . 3  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )
)  ->  ( Y  e.  _V  ->  X  ~<_  Y ) )
796, 78mpd 15 . 2  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )
)  ->  X  ~<_  Y )
80 en2sn 7632 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A }  ~~  { B } )
8136, 49, 80mp2an 670 . . . 4  |-  { A }  ~~  { B }
82 endom 7579 . . . 4  |-  ( { A }  ~~  { B }  ->  { A }  ~<_  { B }
)
8381, 82mp1i 13 . . 3  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  X  ~<_  Y )  ->  { A }  ~<_  { B }
)
84 simpr 459 . . 3  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  X  ~<_  Y )  ->  X  ~<_  Y )
85 incom 3631 . . . . 5  |-  ( { B }  i^i  Y
)  =  ( Y  i^i  { B }
)
86 disjsn 4031 . . . . . 6  |-  ( ( Y  i^i  { B } )  =  (/)  <->  -.  B  e.  Y )
8786biimpri 206 . . . . 5  |-  ( -.  B  e.  Y  -> 
( Y  i^i  { B } )  =  (/) )
8885, 87syl5eq 2455 . . . 4  |-  ( -.  B  e.  Y  -> 
( { B }  i^i  Y )  =  (/) )
8988ad2antlr 725 . . 3  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  X  ~<_  Y )  ->  ( { B }  i^i  Y
)  =  (/) )
90 undom 7642 . . 3  |-  ( ( ( { A }  ~<_  { B }  /\  X  ~<_  Y )  /\  ( { B }  i^i  Y
)  =  (/) )  -> 
( { A }  u.  X )  ~<_  ( { B }  u.  Y
) )
9183, 84, 89, 90syl21anc 1229 . 2  |-  ( ( ( -.  A  e.  X  /\  -.  B  e.  Y )  /\  X  ~<_  Y )  ->  ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )
)
9279, 91impbida 833 1  |-  ( ( -.  A  e.  X  /\  -.  B  e.  Y
)  ->  ( ( { A }  u.  X
)  ~<_  ( { B }  u.  Y )  <->  X  ~<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842   _Vcvv 3058    \ cdif 3410    u. cun 3411    i^i cin 3412    C_ wss 3413   (/)c0 3737   {csn 3971   class class class wbr 4394   `'ccnv 4821   ran crn 4823    |` cres 4824   "cima 4825   Fun wfun 5562    Fn wfn 5563   -->wf 5564   -1-1->wf1 5565   -1-1-onto->wf1o 5567   ` cfv 5568    ~~ cen 7550    ~<_ cdom 7551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-1o 7166  df-er 7347  df-en 7554  df-dom 7555
This theorem is referenced by:  domunfican  7826
  Copyright terms: Public domain W3C validator