MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunfican Structured version   Unicode version

Theorem domunfican 7584
Description: A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Assertion
Ref Expression
domunfican  |-  ( ( ( A  e.  Fin  /\  B  ~~  A )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( A  u.  X )  ~<_  ( B  u.  Y )  <-> 
X  ~<_  Y ) )

Proof of Theorem domunfican
Dummy variables  a 
b  c  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 7358 . . . 4  |-  ( B 
~~  A  ->  A  ~~  B )
2 bren 7319 . . . 4  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
31, 2sylib 196 . . 3  |-  ( B 
~~  A  ->  E. f 
f : A -1-1-onto-> B )
4 ssid 3375 . . . . . . . 8  |-  A  C_  A
5 sseq1 3377 . . . . . . . . . . . . 13  |-  ( a  =  (/)  ->  ( a 
C_  A  <->  (/)  C_  A
) )
65anbi1d 704 . . . . . . . . . . . 12  |-  ( a  =  (/)  ->  ( ( a  C_  A  /\  f : A -1-1-onto-> B )  <->  ( (/)  C_  A  /\  f : A -1-1-onto-> B ) ) )
76anbi1d 704 . . . . . . . . . . 11  |-  ( a  =  (/)  ->  ( ( ( a  C_  A  /\  f : A -1-1-onto-> B )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  <-> 
( ( (/)  C_  A  /\  f : A -1-1-onto-> B )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) ) )
8 uneq1 3503 . . . . . . . . . . . . 13  |-  ( a  =  (/)  ->  ( a  u.  X )  =  ( (/)  u.  X
) )
9 imaeq2 5165 . . . . . . . . . . . . . 14  |-  ( a  =  (/)  ->  ( f
" a )  =  ( f " (/) ) )
109uneq1d 3509 . . . . . . . . . . . . 13  |-  ( a  =  (/)  ->  ( ( f " a )  u.  Y )  =  ( ( f " (/) )  u.  Y ) )
118, 10breq12d 4305 . . . . . . . . . . . 12  |-  ( a  =  (/)  ->  ( ( a  u.  X )  ~<_  ( ( f "
a )  u.  Y
)  <->  ( (/)  u.  X
)  ~<_  ( ( f
" (/) )  u.  Y
) ) )
1211bibi1d 319 . . . . . . . . . . 11  |-  ( a  =  (/)  ->  ( ( ( a  u.  X
)  ~<_  ( ( f
" a )  u.  Y )  <->  X  ~<_  Y )  <-> 
( ( (/)  u.  X
)  ~<_  ( ( f
" (/) )  u.  Y
)  <->  X  ~<_  Y )
) )
137, 12imbi12d 320 . . . . . . . . . 10  |-  ( a  =  (/)  ->  ( ( ( ( a  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( a  u.  X )  ~<_  ( ( f " a
)  u.  Y )  <-> 
X  ~<_  Y ) )  <-> 
( ( ( (/)  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( (/)  u.  X )  ~<_  ( ( f " (/) )  u.  Y )  <-> 
X  ~<_  Y ) ) ) )
14 sseq1 3377 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
a  C_  A  <->  b  C_  A ) )
1514anbi1d 704 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
( a  C_  A  /\  f : A -1-1-onto-> B )  <-> 
( b  C_  A  /\  f : A -1-1-onto-> B ) ) )
1615anbi1d 704 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( ( a  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  <-> 
( ( b  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) ) )
17 uneq1 3503 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
a  u.  X )  =  ( b  u.  X ) )
18 imaeq2 5165 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
f " a )  =  ( f "
b ) )
1918uneq1d 3509 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
( f " a
)  u.  Y )  =  ( ( f
" b )  u.  Y ) )
2017, 19breq12d 4305 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
( a  u.  X
)  ~<_  ( ( f
" a )  u.  Y )  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) ) )
2120bibi1d 319 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( ( a  u.  X )  ~<_  ( ( f " a )  u.  Y )  <->  X  ~<_  Y )  <-> 
( ( b  u.  X )  ~<_  ( ( f " b )  u.  Y )  <->  X  ~<_  Y ) ) )
2216, 21imbi12d 320 . . . . . . . . . 10  |-  ( a  =  b  ->  (
( ( ( a 
C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( a  u.  X
)  ~<_  ( ( f
" a )  u.  Y )  <->  X  ~<_  Y ) )  <->  ( ( ( b  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( b  u.  X
)  ~<_  ( ( f
" b )  u.  Y )  <->  X  ~<_  Y ) ) ) )
23 sseq1 3377 . . . . . . . . . . . . 13  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  A 
<->  ( b  u.  {
c } )  C_  A ) )
2423anbi1d 704 . . . . . . . . . . . 12  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a 
C_  A  /\  f : A -1-1-onto-> B )  <->  ( (
b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B ) ) )
2524anbi1d 704 . . . . . . . . . . 11  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( a  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  <->  ( (
( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) ) )
26 uneq1 3503 . . . . . . . . . . . . 13  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  u.  X )  =  ( ( b  u.  {
c } )  u.  X ) )
27 imaeq2 5165 . . . . . . . . . . . . . 14  |-  ( a  =  ( b  u. 
{ c } )  ->  ( f "
a )  =  ( f " ( b  u.  { c } ) ) )
2827uneq1d 3509 . . . . . . . . . . . . 13  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( f
" a )  u.  Y )  =  ( ( f " (
b  u.  { c } ) )  u.  Y ) )
2926, 28breq12d 4305 . . . . . . . . . . . 12  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a  u.  X )  ~<_  ( ( f " a
)  u.  Y )  <-> 
( ( b  u. 
{ c } )  u.  X )  ~<_  ( ( f " (
b  u.  { c } ) )  u.  Y ) ) )
3029bibi1d 319 . . . . . . . . . . 11  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( a  u.  X )  ~<_  ( ( f "
a )  u.  Y
)  <->  X  ~<_  Y )  <->  ( ( ( b  u. 
{ c } )  u.  X )  ~<_  ( ( f " (
b  u.  { c } ) )  u.  Y )  <->  X  ~<_  Y ) ) )
3125, 30imbi12d 320 . . . . . . . . . 10  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( ( a  C_  A  /\  f : A -1-1-onto-> B )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( a  u.  X )  ~<_  ( ( f " a
)  u.  Y )  <-> 
X  ~<_  Y ) )  <-> 
( ( ( ( b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( ( b  u.  { c } )  u.  X
)  ~<_  ( ( f
" ( b  u. 
{ c } ) )  u.  Y )  <-> 
X  ~<_  Y ) ) ) )
32 sseq1 3377 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
a  C_  A  <->  A  C_  A
) )
3332anbi1d 704 . . . . . . . . . . . 12  |-  ( a  =  A  ->  (
( a  C_  A  /\  f : A -1-1-onto-> B )  <-> 
( A  C_  A  /\  f : A -1-1-onto-> B ) ) )
3433anbi1d 704 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
( ( a  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  <-> 
( ( A  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) ) )
35 uneq1 3503 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
a  u.  X )  =  ( A  u.  X ) )
36 imaeq2 5165 . . . . . . . . . . . . . 14  |-  ( a  =  A  ->  (
f " a )  =  ( f " A ) )
3736uneq1d 3509 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
( f " a
)  u.  Y )  =  ( ( f
" A )  u.  Y ) )
3835, 37breq12d 4305 . . . . . . . . . . . 12  |-  ( a  =  A  ->  (
( a  u.  X
)  ~<_  ( ( f
" a )  u.  Y )  <->  ( A  u.  X )  ~<_  ( ( f " A )  u.  Y ) ) )
3938bibi1d 319 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
( ( a  u.  X )  ~<_  ( ( f " a )  u.  Y )  <->  X  ~<_  Y )  <-> 
( ( A  u.  X )  ~<_  ( ( f " A )  u.  Y )  <->  X  ~<_  Y ) ) )
4034, 39imbi12d 320 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( ( ( a 
C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( a  u.  X
)  ~<_  ( ( f
" a )  u.  Y )  <->  X  ~<_  Y ) )  <->  ( ( ( A  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( A  u.  X
)  ~<_  ( ( f
" A )  u.  Y )  <->  X  ~<_  Y ) ) ) )
41 uncom 3500 . . . . . . . . . . . . 13  |-  ( (/)  u.  X )  =  ( X  u.  (/) )
42 un0 3662 . . . . . . . . . . . . 13  |-  ( X  u.  (/) )  =  X
4341, 42eqtri 2463 . . . . . . . . . . . 12  |-  ( (/)  u.  X )  =  X
44 ima0 5184 . . . . . . . . . . . . . 14  |-  ( f
" (/) )  =  (/)
4544uneq1i 3506 . . . . . . . . . . . . 13  |-  ( ( f " (/) )  u.  Y )  =  (
(/)  u.  Y )
46 uncom 3500 . . . . . . . . . . . . . 14  |-  ( (/)  u.  Y )  =  ( Y  u.  (/) )
47 un0 3662 . . . . . . . . . . . . . 14  |-  ( Y  u.  (/) )  =  Y
4846, 47eqtri 2463 . . . . . . . . . . . . 13  |-  ( (/)  u.  Y )  =  Y
4945, 48eqtri 2463 . . . . . . . . . . . 12  |-  ( ( f " (/) )  u.  Y )  =  Y
5043, 49breq12i 4301 . . . . . . . . . . 11  |-  ( (
(/)  u.  X )  ~<_  ( ( f " (/) )  u.  Y )  <-> 
X  ~<_  Y )
5150a1i 11 . . . . . . . . . 10  |-  ( ( ( (/)  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( (/)  u.  X )  ~<_  ( ( f " (/) )  u.  Y )  <-> 
X  ~<_  Y ) )
52 ssun1 3519 . . . . . . . . . . . . . . 15  |-  b  C_  ( b  u.  {
c } )
53 sstr2 3363 . . . . . . . . . . . . . . 15  |-  ( b 
C_  ( b  u. 
{ c } )  ->  ( ( b  u.  { c } )  C_  A  ->  b 
C_  A ) )
5452, 53ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( b  u.  { c } )  C_  A  ->  b  C_  A )
5554anim1i 568 . . . . . . . . . . . . 13  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  ( b  C_  A  /\  f : A -1-1-onto-> B ) )
5655anim1i 568 . . . . . . . . . . . 12  |-  ( ( ( ( b  u. 
{ c } ) 
C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( b  C_  A  /\  f : A -1-1-onto-> B )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )
5756imim1i 58 . . . . . . . . . . 11  |-  ( ( ( ( b  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( b  u.  X )  ~<_  ( ( f " b
)  u.  Y )  <-> 
X  ~<_  Y ) )  ->  ( ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( b  u.  X )  ~<_  ( ( f " b
)  u.  Y )  <-> 
X  ~<_  Y ) ) )
58 uncom 3500 . . . . . . . . . . . . . . . . . . 19  |-  ( b  u.  { c } )  =  ( { c }  u.  b
)
5958uneq1i 3506 . . . . . . . . . . . . . . . . . 18  |-  ( ( b  u.  { c } )  u.  X
)  =  ( ( { c }  u.  b )  u.  X
)
60 unass 3513 . . . . . . . . . . . . . . . . . 18  |-  ( ( { c }  u.  b )  u.  X
)  =  ( { c }  u.  (
b  u.  X ) )
6159, 60eqtri 2463 . . . . . . . . . . . . . . . . 17  |-  ( ( b  u.  { c } )  u.  X
)  =  ( { c }  u.  (
b  u.  X ) )
6261a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
b  u.  { c } )  u.  X
)  =  ( { c }  u.  (
b  u.  X ) ) )
63 imaundi 5249 . . . . . . . . . . . . . . . . . . 19  |-  ( f
" ( b  u. 
{ c } ) )  =  ( ( f " b )  u.  ( f " { c } ) )
64 simprlr 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  f : A
-1-1-onto-> B )
65 f1ofn 5642 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> B  ->  f  Fn  A )
6664, 65syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  f  Fn  A )
67 ssun2 3520 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  { c }  C_  ( b  u.  { c } )
68 sstr2 3363 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( { c }  C_  (
b  u.  { c } )  ->  (
( b  u.  {
c } )  C_  A  ->  { c } 
C_  A ) )
6967, 68ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( b  u.  { c } )  C_  A  ->  { c }  C_  A )
70 vex 2975 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  c  e. 
_V
7170snss 3999 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( c  e.  A  <->  { c }  C_  A )
7269, 71sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( b  u.  { c } )  C_  A  ->  c  e.  A )
7372adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  c  e.  A )
7473ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  c  e.  A )
75 fnsnfv 5751 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f  Fn  A  /\  c  e.  A )  ->  { ( f `  c ) }  =  ( f " {
c } ) )
7666, 74, 75syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  { (
f `  c ) }  =  ( f " { c } ) )
7776eqcomd 2448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( f " { c } )  =  { ( f `
 c ) } )
7877uneq2d 3510 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
f " b )  u.  ( f " { c } ) )  =  ( ( f " b )  u.  { ( f `
 c ) } ) )
7963, 78syl5eq 2487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( f " ( b  u. 
{ c } ) )  =  ( ( f " b )  u.  { ( f `
 c ) } ) )
8079uneq1d 3509 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
f " ( b  u.  { c } ) )  u.  Y
)  =  ( ( ( f " b
)  u.  { ( f `  c ) } )  u.  Y
) )
81 uncom 3500 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f " b )  u.  { ( f `
 c ) } )  =  ( { ( f `  c
) }  u.  (
f " b ) )
8281uneq1i 3506 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f " b
)  u.  { ( f `  c ) } )  u.  Y
)  =  ( ( { ( f `  c ) }  u.  ( f " b
) )  u.  Y
)
83 unass 3513 . . . . . . . . . . . . . . . . . 18  |-  ( ( { ( f `  c ) }  u.  ( f " b
) )  u.  Y
)  =  ( { ( f `  c
) }  u.  (
( f " b
)  u.  Y ) )
8482, 83eqtri 2463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f " b
)  u.  { ( f `  c ) } )  u.  Y
)  =  ( { ( f `  c
) }  u.  (
( f " b
)  u.  Y ) )
8580, 84syl6eq 2491 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
f " ( b  u.  { c } ) )  u.  Y
)  =  ( { ( f `  c
) }  u.  (
( f " b
)  u.  Y ) ) )
8662, 85breq12d 4305 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
( b  u.  {
c } )  u.  X )  ~<_  ( ( f " ( b  u.  { c } ) )  u.  Y
)  <->  ( { c }  u.  ( b  u.  X ) )  ~<_  ( { ( f `
 c ) }  u.  ( ( f
" b )  u.  Y ) ) ) )
87 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  c  e.  b )
88 incom 3543 . . . . . . . . . . . . . . . . . . 19  |-  ( X  i^i  A )  =  ( A  i^i  X
)
89 simprrl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( A  i^i  X )  =  (/) )
9088, 89syl5eq 2487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( X  i^i  A )  =  (/) )
91 minel 3734 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  A  /\  ( X  i^i  A )  =  (/) )  ->  -.  c  e.  X )
9274, 90, 91syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  c  e.  X )
93 ioran 490 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( c  e.  b  \/  c  e.  X
)  <->  ( -.  c  e.  b  /\  -.  c  e.  X ) )
94 elun 3497 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  ( b  u.  X )  <->  ( c  e.  b  \/  c  e.  X ) )
9593, 94xchnxbir 309 . . . . . . . . . . . . . . . . 17  |-  ( -.  c  e.  ( b  u.  X )  <->  ( -.  c  e.  b  /\  -.  c  e.  X
) )
9687, 92, 95sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  c  e.  ( b  u.  X
) )
97 simplr 754 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B ) )  ->  -.  c  e.  b )
98 f1of1 5640 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> B  ->  f : A -1-1-> B )
9998adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  f : A -1-1-> B )
10054adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  b  C_  A )
101 f1elima 5976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f : A -1-1-> B  /\  c  e.  A  /\  b  C_  A )  ->  ( ( f `
 c )  e.  ( f " b
)  <->  c  e.  b ) )
10299, 73, 100, 101syl3anc 1218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  ( (
f `  c )  e.  ( f " b
)  <->  c  e.  b ) )
103102biimpd 207 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  ->  ( (
f `  c )  e.  ( f " b
)  ->  c  e.  b ) )
104103adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B ) )  ->  ( (
f `  c )  e.  ( f " b
)  ->  c  e.  b ) )
10597, 104mtod 177 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B ) )  ->  -.  (
f `  c )  e.  ( f " b
) )
106105adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  (
f `  c )  e.  ( f " b
) )
107 f1of 5641 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
10864, 107syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  f : A
--> B )
109108, 74ffvelrnd 5844 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( f `  c )  e.  B
)
110 incom 3543 . . . . . . . . . . . . . . . . . . 19  |-  ( Y  i^i  B )  =  ( B  i^i  Y
)
111 simprrr 764 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( B  i^i  Y )  =  (/) )
112110, 111syl5eq 2487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( Y  i^i  B )  =  (/) )
113 minel 3734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( f `  c
)  e.  B  /\  ( Y  i^i  B )  =  (/) )  ->  -.  ( f `  c
)  e.  Y )
114109, 112, 113syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  (
f `  c )  e.  Y )
115 ioran 490 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( ( f `  c )  e.  ( f " b )  \/  ( f `  c )  e.  Y
)  <->  ( -.  (
f `  c )  e.  ( f " b
)  /\  -.  (
f `  c )  e.  Y ) )
116 elun 3497 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  c )  e.  ( ( f
" b )  u.  Y )  <->  ( (
f `  c )  e.  ( f " b
)  \/  ( f `
 c )  e.  Y ) )
117115, 116xchnxbir 309 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( f `  c
)  e.  ( ( f " b )  u.  Y )  <->  ( -.  ( f `  c
)  e.  ( f
" b )  /\  -.  ( f `  c
)  e.  Y ) )
118106, 114, 117sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  -.  (
f `  c )  e.  ( ( f "
b )  u.  Y
) )
119 fvex 5701 . . . . . . . . . . . . . . . . 17  |-  ( f `
 c )  e. 
_V
12070, 119domunsncan 7411 . . . . . . . . . . . . . . . 16  |-  ( ( -.  c  e.  ( b  u.  X )  /\  -.  ( f `
 c )  e.  ( ( f "
b )  u.  Y
) )  ->  (
( { c }  u.  ( b  u.  X ) )  ~<_  ( { ( f `  c ) }  u.  ( ( f "
b )  u.  Y
) )  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) ) )
12196, 118, 120syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( ( { c }  u.  ( b  u.  X
) )  ~<_  ( { ( f `  c
) }  u.  (
( f " b
)  u.  Y ) )  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) ) )
12286, 121bitrd 253 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
( b  u.  {
c } )  u.  X )  ~<_  ( ( f " ( b  u.  { c } ) )  u.  Y
)  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) ) )
123 bitr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( b  u.  { c } )  u.  X )  ~<_  ( ( f "
( b  u.  {
c } ) )  u.  Y )  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) )  /\  ( ( b  u.  X )  ~<_  ( ( f " b
)  u.  Y )  <-> 
X  ~<_  Y ) )  ->  ( ( ( b  u.  { c } )  u.  X
)  ~<_  ( ( f
" ( b  u. 
{ c } ) )  u.  Y )  <-> 
X  ~<_  Y ) )
124123ex 434 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  u. 
{ c } )  u.  X )  ~<_  ( ( f " (
b  u.  { c } ) )  u.  Y )  <->  ( b  u.  X )  ~<_  ( ( f " b )  u.  Y ) )  ->  ( ( ( b  u.  X )  ~<_  ( ( f "
b )  u.  Y
)  <->  X  ~<_  Y )  ->  ( ( ( b  u.  { c } )  u.  X )  ~<_  ( ( f "
( b  u.  {
c } ) )  u.  Y )  <->  X  ~<_  Y ) ) )
125122, 124syl 16 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  Fin  /\ 
-.  c  e.  b )  /\  ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) ) )  ->  ( (
( b  u.  X
)  ~<_  ( ( f
" b )  u.  Y )  <->  X  ~<_  Y )  ->  ( ( ( b  u.  { c } )  u.  X
)  ~<_  ( ( f
" ( b  u. 
{ c } ) )  u.  Y )  <-> 
X  ~<_  Y ) ) )
126125ex 434 . . . . . . . . . . . 12  |-  ( ( b  e.  Fin  /\  -.  c  e.  b
)  ->  ( (
( ( b  u. 
{ c } ) 
C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( ( b  u.  X )  ~<_  ( ( f " b )  u.  Y )  <->  X  ~<_  Y )  ->  ( ( ( b  u.  { c } )  u.  X
)  ~<_  ( ( f
" ( b  u. 
{ c } ) )  u.  Y )  <-> 
X  ~<_  Y ) ) ) )
127126a2d 26 . . . . . . . . . . 11  |-  ( ( b  e.  Fin  /\  -.  c  e.  b
)  ->  ( (
( ( ( b  u.  { c } )  C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( b  u.  X
)  ~<_  ( ( f
" b )  u.  Y )  <->  X  ~<_  Y ) )  ->  ( (
( ( b  u. 
{ c } ) 
C_  A  /\  f : A -1-1-onto-> B )  /\  (
( A  i^i  X
)  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( ( b  u. 
{ c } )  u.  X )  ~<_  ( ( f " (
b  u.  { c } ) )  u.  Y )  <->  X  ~<_  Y ) ) ) )
12857, 127syl5 32 . . . . . . . . . 10  |-  ( ( b  e.  Fin  /\  -.  c  e.  b
)  ->  ( (
( ( b  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( b  u.  X )  ~<_  ( ( f " b
)  u.  Y )  <-> 
X  ~<_  Y ) )  ->  ( ( ( ( b  u.  {
c } )  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( ( b  u.  { c } )  u.  X
)  ~<_  ( ( f
" ( b  u. 
{ c } ) )  u.  Y )  <-> 
X  ~<_  Y ) ) ) )
12913, 22, 31, 40, 51, 128findcard2s 7553 . . . . . . . . 9  |-  ( A  e.  Fin  ->  (
( ( A  C_  A  /\  f : A -1-1-onto-> B
)  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( A  u.  X )  ~<_  ( ( f " A
)  u.  Y )  <-> 
X  ~<_  Y ) ) )
130129expd 436 . . . . . . . 8  |-  ( A  e.  Fin  ->  (
( A  C_  A  /\  f : A -1-1-onto-> B )  ->  ( ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) )  ->  ( ( A  u.  X )  ~<_  ( ( f " A )  u.  Y
)  <->  X  ~<_  Y )
) ) )
1314, 130mpani 676 . . . . . . 7  |-  ( A  e.  Fin  ->  (
f : A -1-1-onto-> B  -> 
( ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) )  -> 
( ( A  u.  X )  ~<_  ( ( f " A )  u.  Y )  <->  X  ~<_  Y ) ) ) )
1321313imp 1181 . . . . . 6  |-  ( ( A  e.  Fin  /\  f : A -1-1-onto-> B  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( A  u.  X
)  ~<_  ( ( f
" A )  u.  Y )  <->  X  ~<_  Y ) )
133 f1ofo 5648 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  ->  f : A -onto-> B )
134 foima 5625 . . . . . . . . . . 11  |-  ( f : A -onto-> B  -> 
( f " A
)  =  B )
135133, 134syl 16 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> B  ->  ( f " A )  =  B )
136135uneq1d 3509 . . . . . . . . 9  |-  ( f : A -1-1-onto-> B  ->  ( (
f " A )  u.  Y )  =  ( B  u.  Y
) )
137136breq2d 4304 . . . . . . . 8  |-  ( f : A -1-1-onto-> B  ->  ( ( A  u.  X )  ~<_  ( ( f " A )  u.  Y
)  <->  ( A  u.  X )  ~<_  ( B  u.  Y ) ) )
138137bibi1d 319 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  ( (
( A  u.  X
)  ~<_  ( ( f
" A )  u.  Y )  <->  X  ~<_  Y )  <-> 
( ( A  u.  X )  ~<_  ( B  u.  Y )  <->  X  ~<_  Y ) ) )
1391383ad2ant2 1010 . . . . . 6  |-  ( ( A  e.  Fin  /\  f : A -1-1-onto-> B  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( ( A  u.  X )  ~<_  ( ( f " A )  u.  Y )  <->  X  ~<_  Y )  <-> 
( ( A  u.  X )  ~<_  ( B  u.  Y )  <->  X  ~<_  Y ) ) )
140132, 139mpbid 210 . . . . 5  |-  ( ( A  e.  Fin  /\  f : A -1-1-onto-> B  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  (
( A  u.  X
)  ~<_  ( B  u.  Y )  <->  X  ~<_  Y ) )
1411403exp 1186 . . . 4  |-  ( A  e.  Fin  ->  (
f : A -1-1-onto-> B  -> 
( ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) )  -> 
( ( A  u.  X )  ~<_  ( B  u.  Y )  <->  X  ~<_  Y ) ) ) )
142141exlimdv 1690 . . 3  |-  ( A  e.  Fin  ->  ( E. f  f : A
-1-1-onto-> B  ->  ( ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) )  ->  ( ( A  u.  X )  ~<_  ( B  u.  Y
)  <->  X  ~<_  Y )
) ) )
1433, 142syl5 32 . 2  |-  ( A  e.  Fin  ->  ( B  ~~  A  ->  (
( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) )  ->  ( ( A  u.  X )  ~<_  ( B  u.  Y
)  <->  X  ~<_  Y )
) ) )
144143imp31 432 1  |-  ( ( ( A  e.  Fin  /\  B  ~~  A )  /\  ( ( A  i^i  X )  =  (/)  /\  ( B  i^i  Y )  =  (/) ) )  ->  ( ( A  u.  X )  ~<_  ( B  u.  Y )  <-> 
X  ~<_  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    u. cun 3326    i^i cin 3327    C_ wss 3328   (/)c0 3637   {csn 3877   class class class wbr 4292   "cima 4843    Fn wfn 5413   -->wf 5414   -1-1->wf1 5415   -onto->wfo 5416   -1-1-onto->wf1o 5417   ` cfv 5418    ~~ cen 7307    ~<_ cdom 7308   Fincfn 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-om 6477  df-1o 6920  df-er 7101  df-en 7311  df-dom 7312  df-fin 7314
This theorem is referenced by:  marypha1lem  7683
  Copyright terms: Public domain W3C validator