MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriomlem Structured version   Unicode version

Theorem domtriomlem 8839
Description: Lemma for domtriom 8840. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypotheses
Ref Expression
domtriomlem.1  |-  A  e. 
_V
domtriomlem.2  |-  B  =  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }
domtriomlem.3  |-  C  =  ( n  e.  om  |->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
) )
Assertion
Ref Expression
domtriomlem  |-  ( -.  A  e.  Fin  ->  om  ~<_  A )
Distinct variable groups:    A, b, n, y    B, b    C, k, n    k, b    y,
b
Allowed substitution hints:    A( k)    B( y, k, n)    C( y,
b)

Proof of Theorem domtriomlem
Dummy variables  c  m  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domtriomlem.2 . . . . 5  |-  B  =  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }
2 domtriomlem.1 . . . . . . 7  |-  A  e. 
_V
32pwex 4639 . . . . . 6  |-  ~P A  e.  _V
4 simpl 457 . . . . . . . 8  |-  ( ( y  C_  A  /\  y  ~~  ~P n )  ->  y  C_  A
)
54ss2abi 3568 . . . . . . 7  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  C_  { y  |  y  C_  A }
6 df-pw 4017 . . . . . . 7  |-  ~P A  =  { y  |  y 
C_  A }
75, 6sseqtr4i 3532 . . . . . 6  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  C_  ~P A
83, 7ssexi 4601 . . . . 5  |-  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  e.  _V
91, 8eqeltri 2541 . . . 4  |-  B  e. 
_V
10 omex 8077 . . . . 5  |-  om  e.  _V
1110enref 7567 . . . 4  |-  om  ~~  om
129, 11axcc3 8835 . . 3  |-  E. b
( b  Fn  om  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )
13 nfv 1708 . . . . . . . 8  |-  F/ n  -.  A  e.  Fin
14 nfra1 2838 . . . . . . . 8  |-  F/ n A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B )
1513, 14nfan 1929 . . . . . . 7  |-  F/ n
( -.  A  e. 
Fin  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )
16 nnfi 7729 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  n  e.  Fin )
17 pwfi 7833 . . . . . . . . . . . . . 14  |-  ( n  e.  Fin  <->  ~P n  e.  Fin )
1816, 17sylib 196 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  ~P n  e.  Fin )
19 ficardom 8359 . . . . . . . . . . . . 13  |-  ( ~P n  e.  Fin  ->  (
card `  ~P n
)  e.  om )
20 isinf 7752 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  Fin  ->  A. m  e.  om  E. y ( y  C_  A  /\  y  ~~  m
) )
21 breq2 4460 . . . . . . . . . . . . . . . . 17  |-  ( m  =  ( card `  ~P n )  ->  (
y  ~~  m  <->  y  ~~  ( card `  ~P n
) ) )
2221anbi2d 703 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( card `  ~P n )  ->  (
( y  C_  A  /\  y  ~~  m )  <-> 
( y  C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2322exbidv 1715 . . . . . . . . . . . . . . 15  |-  ( m  =  ( card `  ~P n )  ->  ( E. y ( y  C_  A  /\  y  ~~  m
)  <->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2423rspcv 3206 . . . . . . . . . . . . . 14  |-  ( (
card `  ~P n
)  e.  om  ->  ( A. m  e.  om  E. y ( y  C_  A  /\  y  ~~  m
)  ->  E. y
( y  C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2520, 24syl5 32 . . . . . . . . . . . . 13  |-  ( (
card `  ~P n
)  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
2618, 19, 253syl 20 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ( card `  ~P n ) ) ) )
27 finnum 8346 . . . . . . . . . . . . . . 15  |-  ( ~P n  e.  Fin  ->  ~P n  e.  dom  card )
28 cardid2 8351 . . . . . . . . . . . . . . 15  |-  ( ~P n  e.  dom  card  -> 
( card `  ~P n
)  ~~  ~P n
)
29 entr 7586 . . . . . . . . . . . . . . . 16  |-  ( ( y  ~~  ( card `  ~P n )  /\  ( card `  ~P n
)  ~~  ~P n
)  ->  y  ~~  ~P n )
3029expcom 435 . . . . . . . . . . . . . . 15  |-  ( (
card `  ~P n
)  ~~  ~P n  ->  ( y  ~~  ( card `  ~P n )  ->  y  ~~  ~P n ) )
3118, 27, 28, 304syl 21 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
y  ~~  ( card `  ~P n )  -> 
y  ~~  ~P n
) )
3231anim2d 565 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  (
( y  C_  A  /\  y  ~~  ( card `  ~P n ) )  ->  ( y  C_  A  /\  y  ~~  ~P n ) ) )
3332eximdv 1711 . . . . . . . . . . . 12  |-  ( n  e.  om  ->  ( E. y ( y  C_  A  /\  y  ~~  ( card `  ~P n ) )  ->  E. y
( y  C_  A  /\  y  ~~  ~P n
) ) )
3426, 33syld 44 . . . . . . . . . . 11  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) ) )
351neeq1i 2742 . . . . . . . . . . . 12  |-  ( B  =/=  (/)  <->  { y  |  ( y  C_  A  /\  y  ~~  ~P n ) }  =/=  (/) )
36 abn0 3813 . . . . . . . . . . . 12  |-  ( { y  |  ( y 
C_  A  /\  y  ~~  ~P n ) }  =/=  (/)  <->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) )
3735, 36bitri 249 . . . . . . . . . . 11  |-  ( B  =/=  (/)  <->  E. y ( y 
C_  A  /\  y  ~~  ~P n ) )
3834, 37syl6ibr 227 . . . . . . . . . 10  |-  ( n  e.  om  ->  ( -.  A  e.  Fin  ->  B  =/=  (/) ) )
3938com12 31 . . . . . . . . 9  |-  ( -.  A  e.  Fin  ->  ( n  e.  om  ->  B  =/=  (/) ) )
4039adantr 465 . . . . . . . 8  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  B  =/=  (/) ) )
41 rsp 2823 . . . . . . . . 9  |-  ( A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
)  ->  ( n  e.  om  ->  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) ) )
4241adantl 466 . . . . . . . 8  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) ) )
4340, 42mpdd 40 . . . . . . 7  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  -> 
( n  e.  om  ->  ( b `  n
)  e.  B ) )
4415, 43ralrimi 2857 . . . . . 6  |-  ( ( -.  A  e.  Fin  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  ->  A. n  e.  om  ( b `  n
)  e.  B )
45443adant2 1015 . . . . 5  |-  ( ( -.  A  e.  Fin  /\  b  Fn  om  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )  ->  A. n  e.  om  ( b `  n )  e.  B
)
46453expib 1199 . . . 4  |-  ( -.  A  e.  Fin  ->  ( ( b  Fn  om  /\ 
A. n  e.  om  ( B  =/=  (/)  ->  (
b `  n )  e.  B ) )  ->  A. n  e.  om  ( b `  n
)  e.  B ) )
4746eximdv 1711 . . 3  |-  ( -.  A  e.  Fin  ->  ( E. b ( b  Fn  om  /\  A. n  e.  om  ( B  =/=  (/)  ->  ( b `  n )  e.  B
) )  ->  E. b A. n  e.  om  ( b `  n
)  e.  B ) )
4812, 47mpi 17 . 2  |-  ( -.  A  e.  Fin  ->  E. b A. n  e. 
om  ( b `  n )  e.  B
)
49 axcc2 8834 . . . . 5  |-  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )
50 simp2 997 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
c  Fn  om )
51 nfra1 2838 . . . . . . . . . . 11  |-  F/ n A. n  e.  om  ( b `  n
)  e.  B
52 nfra1 2838 . . . . . . . . . . 11  |-  F/ n A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) )
5351, 52nfan 1929 . . . . . . . . . 10  |-  F/ n
( A. n  e. 
om  ( b `  n )  e.  B  /\  A. n  e.  om  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )
54 fvex 5882 . . . . . . . . . . . . . . . 16  |-  ( b `
 n )  e. 
_V
55 sseq1 3520 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( b `  n )  ->  (
y  C_  A  <->  ( b `  n )  C_  A
) )
56 breq1 4459 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( b `  n )  ->  (
y  ~~  ~P n  <->  ( b `  n ) 
~~  ~P n ) )
5755, 56anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( b `  n )  ->  (
( y  C_  A  /\  y  ~~  ~P n
)  <->  ( ( b `
 n )  C_  A  /\  ( b `  n )  ~~  ~P n ) ) )
5854, 57, 1elab2 3249 . . . . . . . . . . . . . . 15  |-  ( ( b `  n )  e.  B  <->  ( (
b `  n )  C_  A  /\  ( b `
 n )  ~~  ~P n ) )
5958simprbi 464 . . . . . . . . . . . . . 14  |-  ( ( b `  n )  e.  B  ->  (
b `  n )  ~~  ~P n )
6059ralimi 2850 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  A. n  e.  om  ( b `  n )  ~~  ~P n )
61 fveq2 5872 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
b `  n )  =  ( b `  k ) )
62 pweq 4018 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  ~P n  =  ~P k
)
6361, 62breq12d 4469 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  (
( b `  n
)  ~~  ~P n  <->  ( b `  k ) 
~~  ~P k ) )
6463cbvralv 3084 . . . . . . . . . . . . . . 15  |-  ( A. n  e.  om  (
b `  n )  ~~  ~P n  <->  A. k  e.  om  ( b `  k )  ~~  ~P k )
65 peano2 6719 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  om  ->  suc  n  e.  om )
66 omelon 8080 . . . . . . . . . . . . . . . . . . 19  |-  om  e.  On
6766onelssi 4995 . . . . . . . . . . . . . . . . . 18  |-  ( suc  n  e.  om  ->  suc  n  C_  om )
68 ssralv 3560 . . . . . . . . . . . . . . . . . 18  |-  ( suc  n  C_  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  A. k  e.  suc  n ( b `  k )  ~~  ~P k ) )
6965, 67, 683syl 20 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  A. k  e.  suc  n ( b `  k )  ~~  ~P k ) )
70 pwsdompw 8601 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( b `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( b `  k )  ~<  (
b `  n )
)
7170ex 434 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. k  e.  suc  n ( b `  k )  ~~  ~P k  ->  U_ k  e.  n  ( b `  k
)  ~<  ( b `  n ) ) )
7269, 71syld 44 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  U_ k  e.  n  ( b `  k
)  ~<  ( b `  n ) ) )
73 sdomdif 7684 . . . . . . . . . . . . . . . 16  |-  ( U_ k  e.  n  (
b `  k )  ~<  ( b `  n
)  ->  ( (
b `  n )  \  U_ k  e.  n  ( b `  k
) )  =/=  (/) )
7472, 73syl6 33 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( A. k  e.  om  ( b `  k
)  ~~  ~P k  ->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  =/=  (/) ) )
7564, 74syl5bi 217 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  ~~  ~P n  ->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  =/=  (/) ) )
76 difss 3627 . . . . . . . . . . . . . . . . 17  |-  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  C_  (
b `  n )
7754, 76ssexi 4601 . . . . . . . . . . . . . . . 16  |-  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  e.  _V
78 domtriomlem.3 . . . . . . . . . . . . . . . . 17  |-  C  =  ( n  e.  om  |->  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
) )
7978fvmpt2 5964 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  om  /\  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  e.  _V )  ->  ( C `  n
)  =  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) ) )
8077, 79mpan2 671 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( C `  n )  =  ( ( b `
 n )  \  U_ k  e.  n  ( b `  k
) ) )
8180neeq1d 2734 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  (
( C `  n
)  =/=  (/)  <->  ( (
b `  n )  \  U_ k  e.  n  ( b `  k
) )  =/=  (/) ) )
8275, 81sylibrd 234 . . . . . . . . . . . . 13  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  ~~  ~P n  ->  ( C `  n
)  =/=  (/) ) )
8360, 82syl5com 30 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( n  e.  om  ->  ( C `  n )  =/=  (/) ) )
8483adantr 465 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( C `  n
)  =/=  (/) ) )
85 rsp 2823 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) )  ->  (
n  e.  om  ->  ( ( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) ) )
8685adantl 466 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( ( C `  n )  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) ) )
8784, 86mpdd 40 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( n  e.  om  ->  ( c `  n
)  e.  ( C `
 n ) ) )
8853, 87ralrimi 2857 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  ->  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
89883adant2 1015 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  ->  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
9050, 89jca 532 . . . . . . 7  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) )
91903expib 1199 . . . . . 6  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( ( c  Fn  om  /\  A. n  e.  om  (
( C `  n
)  =/=  (/)  ->  (
c `  n )  e.  ( C `  n
) ) )  -> 
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) ) )
9291eximdv 1711 . . . . 5  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( E. c ( c  Fn 
om  /\  A. n  e.  om  ( ( C `
 n )  =/=  (/)  ->  ( c `  n )  e.  ( C `  n ) ) )  ->  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) ) )
9349, 92mpi 17 . . . 4  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  E. c
( c  Fn  om  /\ 
A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) ) )
94 simp2 997 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c  Fn  om )
95 nfra1 2838 . . . . . . . . . . . . 13  |-  F/ n A. n  e.  om  ( c `  n
)  e.  ( C `
 n )
9651, 95nfan 1929 . . . . . . . . . . . 12  |-  F/ n
( A. n  e. 
om  ( b `  n )  e.  B  /\  A. n  e.  om  ( c `  n
)  e.  ( C `
 n ) )
97 rsp 2823 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  ( C `  n ) ) )
9897com12 31 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( C `
 n ) ) )
99 rsp 2823 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( n  e.  om  ->  (
b `  n )  e.  B ) )
10099com12 31 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  e.  B  -> 
( b `  n
)  e.  B ) )
10180eleq2d 2527 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  <->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
102 eldifi 3622 . . . . . . . . . . . . . . . . . . 19  |-  ( ( c `  n )  e.  ( ( b `
 n )  \  U_ k  e.  n  ( b `  k
) )  ->  (
c `  n )  e.  ( b `  n
) )
103101, 102syl6bi 228 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( b `
 n ) ) )
10458simplbi 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( b `  n )  e.  B  ->  (
b `  n )  C_  A )
105104sseld 3498 . . . . . . . . . . . . . . . . . 18  |-  ( ( b `  n )  e.  B  ->  (
( c `  n
)  e.  ( b `
 n )  -> 
( c `  n
)  e.  A ) )
106103, 105syl9 71 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  om  ->  (
( b `  n
)  e.  B  -> 
( ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  A
) ) )
107100, 106syld 44 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  ( A. n  e.  om  ( b `  n
)  e.  B  -> 
( ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  A
) ) )
108107com23 78 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  (
( c `  n
)  e.  ( C `
 n )  -> 
( A. n  e. 
om  ( b `  n )  e.  B  ->  ( c `  n
)  e.  A ) ) )
10998, 108syld 44 . . . . . . . . . . . . . 14  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( A. n  e. 
om  ( b `  n )  e.  B  ->  ( c `  n
)  e.  A ) ) )
110109com13 80 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  A
) ) )
111110imp 429 . . . . . . . . . . . 12  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  (
n  e.  om  ->  ( c `  n )  e.  A ) )
11296, 111ralrimi 2857 . . . . . . . . . . 11  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. n  e.  om  ( c `  n )  e.  A
)
1131123adant2 1015 . . . . . . . . . 10  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. n  e.  om  ( c `  n )  e.  A
)
114 ffnfv 6058 . . . . . . . . . 10  |-  ( c : om --> A  <->  ( c  Fn  om  /\  A. n  e.  om  ( c `  n )  e.  A
) )
11594, 113, 114sylanbrc 664 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c : om --> A )
116 nfv 1708 . . . . . . . . . . . 12  |-  F/ n  k  e.  om
117 nnord 6707 . . . . . . . . . . . . . . . 16  |-  ( k  e.  om  ->  Ord  k )
118 nnord 6707 . . . . . . . . . . . . . . . 16  |-  ( n  e.  om  ->  Ord  n )
119 ordtri3or 4919 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  k  /\  Ord  n )  ->  (
k  e.  n  \/  k  =  n  \/  n  e.  k ) )
120117, 118, 119syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( k  e.  n  \/  k  =  n  \/  n  e.  k
) )
12197, 101mpbidi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( n  e.  om  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
12295, 121ralrimi 2857 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  A. n  e.  om  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) )
123 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  k  ->  (
c `  n )  =  ( c `  k ) )
124 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  =  j  ->  (
b `  k )  =  ( b `  j ) )
125124cbviunv 4371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  U_ k  e.  n  ( b `  k )  =  U_ j  e.  n  (
b `  j )
126 iuneq1 4346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  k  ->  U_ j  e.  n  ( b `  j )  =  U_ j  e.  k  (
b `  j )
)
127125, 126syl5eq 2510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  k  ->  U_ k  e.  n  ( b `  k )  =  U_ j  e.  k  (
b `  j )
)
12861, 127difeq12d 3619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( n  =  k  ->  (
( b `  n
)  \  U_ k  e.  n  ( b `  k ) )  =  ( ( b `  k )  \  U_ j  e.  k  (
b `  j )
) )
129123, 128eleq12d 2539 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( n  =  k  ->  (
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  <->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
130129rspccv 3207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. n  e.  om  (
c `  n )  e.  ( ( b `  n )  \  U_ k  e.  n  (
b `  k )
)  ->  ( k  e.  om  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
131122, 130syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
132131com12 31 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) ) ) )
1331323ad2ant1 1017 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
134 eldifi 3622 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( c `  k )  e.  ( ( b `
 k )  \  U_ j  e.  k 
( b `  j
) )  ->  (
c `  k )  e.  ( b `  k
) )
135 eleq1 2529 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( b `
 k )  <->  ( c `  n )  e.  ( b `  k ) ) )
136134, 135syl5ib 219 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  ->  (
c `  n )  e.  ( b `  k
) ) )
1371363ad2ant3 1019 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) )  -> 
( c `  n
)  e.  ( b `
 k ) ) )
138133, 137syld 44 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  ( b `  k ) ) )
139138imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  ( b `  k ) )
140 ssiun2 4375 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  n  ->  (
b `  k )  C_ 
U_ k  e.  n  ( b `  k
) )
141140sseld 3498 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  n  ->  (
( c `  n
)  e.  ( b `
 k )  -> 
( c `  n
)  e.  U_ k  e.  n  ( b `  k ) ) )
142139, 141syl5 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  n  ->  (
( ( k  e. 
om  /\  n  e.  om 
/\  ( c `  k )  =  ( c `  n ) )  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ k  e.  n  (
b `  k )
) )
1431423impib 1194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ k  e.  n  (
b `  k )
)
144121com12 31 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  om  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) ) ) )
1451443ad2ant2 1018 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) ) )
146145imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  ( ( b `  n
)  \  U_ k  e.  n  ( b `  k ) ) )
147146eldifbd 3484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ k  e.  n  ( b `  k
) )
1481473adant1 1014 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ k  e.  n  ( b `  k
) )
149143, 148pm2.21dd 174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  n  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  k  =  n )
1501493exp 1195 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  n  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
151 ax-1 6 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) )
152151a1d 25 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
153 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  =  n  ->  (
b `  j )  =  ( b `  n ) )
154153ssiun2s 4376 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  e.  k  ->  (
b `  n )  C_ 
U_ j  e.  k  ( b `  j
) )
155154sseld 3498 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e.  k  ->  (
( c `  n
)  e.  ( b `
 n )  -> 
( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
156102, 155syl5 32 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  k  ->  (
( c `  n
)  e.  ( ( b `  n ) 
\  U_ k  e.  n  ( b `  k
) )  ->  (
c `  n )  e.  U_ j  e.  k  ( b `  j
) ) )
157146, 156syl5 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  k  ->  (
( ( k  e. 
om  /\  n  e.  om 
/\  ( c `  k )  =  ( c `  n ) )  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) )
1581573impib 1194 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
)
159 eleq1 2529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  <->  ( c `  n )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) ) ) )
160 eldifn 3623 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( c `  n )  e.  ( ( b `
 k )  \  U_ j  e.  k 
( b `  j
) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) )
161159, 160syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( c `  k )  =  ( c `  n )  ->  (
( c `  k
)  e.  ( ( b `  k ) 
\  U_ j  e.  k  ( b `  j
) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
1621613ad2ant3 1019 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( c `  k )  e.  ( ( b `  k
)  \  U_ j  e.  k  ( b `  j ) )  ->  -.  ( c `  n
)  e.  U_ j  e.  k  ( b `  j ) ) )
163133, 162syld 44 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( A. n  e. 
om  ( c `  n )  e.  ( C `  n )  ->  -.  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) )
164163a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  k  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  -.  ( c `  n )  e.  U_ j  e.  k  (
b `  j )
) ) )
1651643imp 1190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  -.  (
c `  n )  e.  U_ j  e.  k  ( b `  j
) )
166158, 165pm2.21dd 174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  k  /\  ( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  /\  A. n  e. 
om  ( c `  n )  e.  ( C `  n ) )  ->  k  =  n )
1671663exp 1195 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  k  ->  (
( k  e.  om  /\  n  e.  om  /\  ( c `  k
)  =  ( c `
 n ) )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
168150, 152, 1673jaoi 1291 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( ( k  e.  om  /\  n  e.  om  /\  ( c `
 k )  =  ( c `  n
) )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) )
169168com12 31 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  n  e.  om  /\  (
c `  k )  =  ( c `  n ) )  -> 
( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) )
1701693expia 1198 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  ( ( k  e.  n  \/  k  =  n  \/  n  e.  k )  ->  ( A. n  e.  om  ( c `  n
)  e.  ( C `
 n )  -> 
k  =  n ) ) ) )
171120, 170mpid 41 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  ( A. n  e.  om  ( c `  n )  e.  ( C `  n )  ->  k  =  n ) ) )
172171com3r 79 . . . . . . . . . . . . 13  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( (
k  e.  om  /\  n  e.  om )  ->  ( ( c `  k )  =  ( c `  n )  ->  k  =  n ) ) )
173172expd 436 . . . . . . . . . . . 12  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  ( n  e.  om  ->  ( (
c `  k )  =  ( c `  n )  ->  k  =  n ) ) ) )
17495, 116, 173ralrimd 2861 . . . . . . . . . . 11  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  ( k  e.  om  ->  A. n  e.  om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) ) )
175174ralrimiv 2869 . . . . . . . . . 10  |-  ( A. n  e.  om  (
c `  n )  e.  ( C `  n
)  ->  A. k  e.  om  A. n  e. 
om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) )
1761753ad2ant3 1019 . . . . . . . . 9  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  A. k  e.  om  A. n  e. 
om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) )
177 dff13 6167 . . . . . . . . 9  |-  ( c : om -1-1-> A  <->  ( c : om --> A  /\  A. k  e.  om  A. n  e.  om  ( ( c `
 k )  =  ( c `  n
)  ->  k  =  n ) ) )
178115, 176, 177sylanbrc 664 . . . . . . . 8  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  c : om -1-1-> A )
179 19.8a 1858 . . . . . . . 8  |-  ( c : om -1-1-> A  ->  E. c  c : om
-1-1-> A )
180178, 179syl 16 . . . . . . 7  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  E. c 
c : om -1-1-> A
)
1812brdom 7547 . . . . . . 7  |-  ( om  ~<_  A  <->  E. c  c : om -1-1-> A )
182180, 181sylibr 212 . . . . . 6  |-  ( ( A. n  e.  om  ( b `  n
)  e.  B  /\  c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  om  ~<_  A )
1831823expib 1199 . . . . 5  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( ( c  Fn  om  /\  A. n  e.  om  (
c `  n )  e.  ( C `  n
) )  ->  om  ~<_  A ) )
184183exlimdv 1725 . . . 4  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  ( E. c ( c  Fn 
om  /\  A. n  e.  om  ( c `  n )  e.  ( C `  n ) )  ->  om  ~<_  A ) )
18593, 184mpd 15 . . 3  |-  ( A. n  e.  om  (
b `  n )  e.  B  ->  om  ~<_  A )
186185exlimiv 1723 . 2  |-  ( E. b A. n  e. 
om  ( b `  n )  e.  B  ->  om  ~<_  A )
18748, 186syl 16 1  |-  ( -.  A  e.  Fin  ->  om  ~<_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   _Vcvv 3109    \ cdif 3468    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U_ciun 4332   class class class wbr 4456    |-> cmpt 4515   Ord word 4886   suc csuc 4889   dom cdm 5008    Fn wfn 5589   -->wf 5590   -1-1->wf1 5591   ` cfv 5594   omcom 6699    ~~ cen 7532    ~<_ cdom 7533    ~< csdm 7534   Fincfn 7535   cardccrd 8333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-card 8337  df-cda 8565
This theorem is referenced by:  domtriom  8840
  Copyright terms: Public domain W3C validator