MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex Structured version   Unicode version

Theorem domssex 7572
Description: Weakening of domssex 7572 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domssex
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 brdomi 7421 . 2  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
2 reldom 7416 . . 3  |-  Rel  ~<_
32brrelex2i 4978 . 2  |-  ( A  ~<_  B  ->  B  e.  _V )
4 vex 3071 . . . . . . . 8  |-  f  e. 
_V
5 f1stres 6698 . . . . . . . . . 10  |-  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )
65a1i 11 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f ) )
7 difexg 4538 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
87adantl 466 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( B  \  ran  f )  e.  _V )
9 snex 4631 . . . . . . . . . 10  |-  { ~P U.
ran  A }  e.  _V
10 xpexg 6607 . . . . . . . . . 10  |-  ( ( ( B  \  ran  f )  e.  _V  /\ 
{ ~P U. ran  A }  e.  _V )  ->  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V )
118, 9, 10sylancl 662 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } )  e.  _V )
12 fex2 6632 . . . . . . . . 9  |-  ( ( ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) : ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) --> ( B  \  ran  f )  /\  (
( B  \  ran  f )  X.  { ~P U. ran  A }
)  e.  _V  /\  ( B  \  ran  f
)  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
136, 11, 8, 12syl3anc 1219 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) )  e.  _V )
14 unexg 6481 . . . . . . . 8  |-  ( ( f  e.  _V  /\  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A } ) )  e.  _V )  -> 
( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
154, 13, 14sylancr 663 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
16 cnvexg 6624 . . . . . . 7  |-  ( ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
1715, 16syl 16 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
18 rnexg 6610 . . . . . 6  |-  ( `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V  ->  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) )  e.  _V )
1917, 18syl 16 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V )
20 simpl 457 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  f : A -1-1-> B )
21 f1dm 5708 . . . . . . . . . 10  |-  ( f : A -1-1-> B  ->  dom  f  =  A
)
224dmex 6611 . . . . . . . . . 10  |-  dom  f  e.  _V
2321, 22syl6eqelr 2548 . . . . . . . . 9  |-  ( f : A -1-1-> B  ->  A  e.  _V )
2423adantr 465 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  e.  _V )
25 simpr 461 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  e.  _V )
26 eqid 2451 . . . . . . . . 9  |-  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  =  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )
2726domss2 7570 . . . . . . . 8  |-  ( ( f : A -1-1-> B  /\  A  e.  _V  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2820, 24, 25, 27syl3anc 1219 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  o.  f )  =  (  _I  |`  A )
) )
2928simp2d 1001 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  A  C_  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3028simp1d 1000 . . . . . . 7  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )
31 f1oen3g 7425 . . . . . . 7  |-  ( ( `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  /\  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) : B -1-1-onto-> ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3217, 30, 31syl2anc 661 . . . . . 6  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B 
\  ran  f )  X.  { ~P U. ran  A } ) ) ) )
3329, 32jca 532 . . . . 5  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
34 sseq2 3476 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( A  C_  x  <->  A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
35 breq2 4394 . . . . . . 7  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( B  ~~  x  <->  B 
~~  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) )
3634, 35anbi12d 710 . . . . . 6  |-  ( x  =  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  -> 
( ( A  C_  x  /\  B  ~~  x
)  <->  ( A  C_  ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) ) ) )
3736spcegv 3154 . . . . 5  |-  ( ran  `' ( f  u.  ( 1st  |`  (
( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  e. 
_V  ->  ( ( A 
C_  ran  `' (
f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) )  /\  B  ~~  ran  `' ( f  u.  ( 1st  |`  ( ( B  \  ran  f )  X.  { ~P U. ran  A }
) ) ) )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
3819, 33, 37sylc 60 . . . 4  |-  ( ( f : A -1-1-> B  /\  B  e.  _V )  ->  E. x ( A 
C_  x  /\  B  ~~  x ) )
3938ex 434 . . 3  |-  ( f : A -1-1-> B  -> 
( B  e.  _V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
4039exlimiv 1689 . 2  |-  ( E. f  f : A -1-1-> B  ->  ( B  e. 
_V  ->  E. x ( A 
C_  x  /\  B  ~~  x ) ) )
411, 3, 40sylc 60 1  |-  ( A  ~<_  B  ->  E. x
( A  C_  x  /\  B  ~~  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   _Vcvv 3068    \ cdif 3423    u. cun 3424    C_ wss 3426   ~Pcpw 3958   {csn 3975   U.cuni 4189   class class class wbr 4390    _I cid 4729    X. cxp 4936   `'ccnv 4937   dom cdm 4938   ran crn 4939    |` cres 4940    o. ccom 4942   -->wf 5512   -1-1->wf1 5513   -1-1-onto->wf1o 5515   1stc1st 6675    ~~ cen 7407    ~<_ cdom 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-1st 6677  df-2nd 6678  df-en 7411  df-dom 7412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator