MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Unicode version

Theorem domneq0 17290
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b  |-  B  =  ( Base `  R
)
domneq0.t  |-  .x.  =  ( .r `  R )
domneq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
domneq0  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )

Proof of Theorem domneq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 980 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  e.  B  /\  Y  e.  B )
)
2 domneq0.b . . . . . 6  |-  B  =  ( Base `  R
)
3 domneq0.t . . . . . 6  |-  .x.  =  ( .r `  R )
4 domneq0.z . . . . . 6  |-  .0.  =  ( 0g `  R )
52, 3, 4isdomn 17287 . . . . 5  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
65simprbi 461 . . . 4  |-  ( R  e. Domn  ->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )
763ad2ant1 1002 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )
8 oveq1 6087 . . . . . 6  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
98eqeq1d 2441 . . . . 5  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  .0.  <->  ( X  .x.  y )  =  .0.  ) )
10 eqeq1 2439 . . . . . 6  |-  ( x  =  X  ->  (
x  =  .0.  <->  X  =  .0.  ) )
1110orbi1d 695 . . . . 5  |-  ( x  =  X  ->  (
( x  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  y  =  .0.  ) ) )
129, 11imbi12d 320 . . . 4  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  y )  =  .0.  ->  ( X  =  .0.  \/  y  =  .0.  ) ) ) )
13 oveq2 6088 . . . . . 6  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1413eqeq1d 2441 . . . . 5  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  .0.  <->  ( X  .x.  Y )  =  .0.  ) )
15 eqeq1 2439 . . . . . 6  |-  ( y  =  Y  ->  (
y  =  .0.  <->  Y  =  .0.  ) )
1615orbi2d 694 . . . . 5  |-  ( y  =  Y  ->  (
( X  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
1714, 16imbi12d 320 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  .0. 
->  ( X  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) ) )
1812, 17rspc2va 3069 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )  ->  ( ( X 
.x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
191, 7, 18syl2anc 654 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  )
) )
20 domnrng 17289 . . . . . 6  |-  ( R  e. Domn  ->  R  e.  Ring )
21203ad2ant1 1002 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
22 simp3 983 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
232, 3, 4rnglz 16616 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
2421, 22, 23syl2anc 654 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
25 oveq1 6087 . . . . 5  |-  ( X  =  .0.  ->  ( X  .x.  Y )  =  (  .0.  .x.  Y
) )
2625eqeq1d 2441 . . . 4  |-  ( X  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  (  .0.  .x. 
Y )  =  .0.  ) )
2724, 26syl5ibrcom 222 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
28 simp2 982 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
292, 3, 4rngrz 16617 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
3021, 28, 29syl2anc 654 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
31 oveq2 6088 . . . . 5  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
3231eqeq1d 2441 . . . 4  |-  ( Y  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
3330, 32syl5ibrcom 222 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
3427, 33jaod 380 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  =  .0. 
\/  Y  =  .0.  )  ->  ( X  .x.  Y )  =  .0.  ) )
3519, 34impbid 191 1  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   ` cfv 5406  (class class class)co 6080   Basecbs 14156   .rcmulr 14221   0gc0g 14360   Ringcrg 16576  NzRingcnzr 17260  Domncdomn 17272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-nn 10310  df-2 10367  df-ndx 14159  df-slot 14160  df-base 14161  df-sets 14162  df-plusg 14233  df-0g 14362  df-mnd 15397  df-grp 15524  df-minusg 15525  df-mgp 16565  df-rng 16579  df-nzr 17261  df-domn 17276
This theorem is referenced by:  domnmuln0  17291  opprdomn  17294  fidomndrnglem  17299  domnchr  17804  znidomb  17835  fta1glem2  21522
  Copyright terms: Public domain W3C validator