MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domneq0 Structured version   Unicode version

Theorem domneq0 17712
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
domneq0.b  |-  B  =  ( Base `  R
)
domneq0.t  |-  .x.  =  ( .r `  R )
domneq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
domneq0  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )

Proof of Theorem domneq0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 990 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  e.  B  /\  Y  e.  B )
)
2 domneq0.b . . . . . 6  |-  B  =  ( Base `  R
)
3 domneq0.t . . . . . 6  |-  .x.  =  ( .r `  R )
4 domneq0.z . . . . . 6  |-  .0.  =  ( 0g `  R )
52, 3, 4isdomn 17709 . . . . 5  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
65simprbi 464 . . . 4  |-  ( R  e. Domn  ->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )
763ad2ant1 1012 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )
8 oveq1 6284 . . . . . 6  |-  ( x  =  X  ->  (
x  .x.  y )  =  ( X  .x.  y ) )
98eqeq1d 2464 . . . . 5  |-  ( x  =  X  ->  (
( x  .x.  y
)  =  .0.  <->  ( X  .x.  y )  =  .0.  ) )
10 eqeq1 2466 . . . . . 6  |-  ( x  =  X  ->  (
x  =  .0.  <->  X  =  .0.  ) )
1110orbi1d 702 . . . . 5  |-  ( x  =  X  ->  (
( x  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  y  =  .0.  ) ) )
129, 11imbi12d 320 . . . 4  |-  ( x  =  X  ->  (
( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  y )  =  .0.  ->  ( X  =  .0.  \/  y  =  .0.  ) ) ) )
13 oveq2 6285 . . . . . 6  |-  ( y  =  Y  ->  ( X  .x.  y )  =  ( X  .x.  Y
) )
1413eqeq1d 2464 . . . . 5  |-  ( y  =  Y  ->  (
( X  .x.  y
)  =  .0.  <->  ( X  .x.  Y )  =  .0.  ) )
15 eqeq1 2466 . . . . . 6  |-  ( y  =  Y  ->  (
y  =  .0.  <->  Y  =  .0.  ) )
1615orbi2d 701 . . . . 5  |-  ( y  =  Y  ->  (
( X  =  .0. 
\/  y  =  .0.  )  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
1714, 16imbi12d 320 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .x.  y )  =  .0. 
->  ( X  =  .0. 
\/  y  =  .0.  ) )  <->  ( ( X  .x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) ) )
1812, 17rspc2va 3219 . . 3  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) )  ->  ( ( X 
.x.  Y )  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
191, 7, 18syl2anc 661 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  ->  ( X  =  .0.  \/  Y  =  .0.  )
) )
20 domnrng 17711 . . . . . 6  |-  ( R  e. Domn  ->  R  e.  Ring )
21203ad2ant1 1012 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  R  e.  Ring )
22 simp3 993 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
232, 3, 4rnglz 17017 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
2421, 22, 23syl2anc 661 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
25 oveq1 6284 . . . . 5  |-  ( X  =  .0.  ->  ( X  .x.  Y )  =  (  .0.  .x.  Y
) )
2625eqeq1d 2464 . . . 4  |-  ( X  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  (  .0.  .x. 
Y )  =  .0.  ) )
2724, 26syl5ibrcom 222 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
28 simp2 992 . . . . 5  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
292, 3, 4rngrz 17018 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
3021, 28, 29syl2anc 661 . . . 4  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
31 oveq2 6285 . . . . 5  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
3231eqeq1d 2464 . . . 4  |-  ( Y  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
3330, 32syl5ibrcom 222 . . 3  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  .0.  ->  ( X  .x.  Y )  =  .0.  ) )
3427, 33jaod 380 . 2  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  =  .0. 
\/  Y  =  .0.  )  ->  ( X  .x.  Y )  =  .0.  ) )
3519, 34impbid 191 1  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   ` cfv 5581  (class class class)co 6277   Basecbs 14481   .rcmulr 14547   0gc0g 14686   Ringcrg 16981  NzRingcnzr 17682  Domncdomn 17694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-nn 10528  df-2 10585  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-plusg 14559  df-0g 14688  df-mnd 15723  df-grp 15853  df-minusg 15854  df-mgp 16927  df-rng 16983  df-nzr 17683  df-domn 17698
This theorem is referenced by:  domnmuln0  17713  opprdomn  17716  fidomndrnglem  17721  domnchr  18331  znidomb  18362  fta1glem2  22297
  Copyright terms: Public domain W3C validator