MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Unicode version

Theorem domnchr 16768
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr  |-  ( R  e. Domn  ->  ( (chr `  R )  =  0  \/  (chr `  R
)  e.  Prime )
)

Proof of Theorem domnchr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2569 . . 3  |-  ( (chr
`  R )  =/=  0  <->  -.  (chr `  R
)  =  0 )
2 domnrng 16311 . . . . . . . . . 10  |-  ( R  e. Domn  ->  R  e.  Ring )
3 eqid 2404 . . . . . . . . . . 11  |-  (chr `  R )  =  (chr
`  R )
43chrcl 16762 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (chr `  R )  e.  NN0 )
52, 4syl 16 . . . . . . . . 9  |-  ( R  e. Domn  ->  (chr `  R
)  e.  NN0 )
65adantr 452 . . . . . . . 8  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  NN0 )
7 simpr 448 . . . . . . . 8  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  =/=  0 )
8 eldifsn 3887 . . . . . . . 8  |-  ( (chr
`  R )  e.  ( NN0  \  {
0 } )  <->  ( (chr `  R )  e.  NN0  /\  (chr `  R )  =/=  0 ) )
96, 7, 8sylanbrc 646 . . . . . . 7  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  ( NN0  \  { 0 } ) )
10 dfn2 10190 . . . . . . 7  |-  NN  =  ( NN0  \  { 0 } )
119, 10syl6eleqr 2495 . . . . . 6  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  NN )
12 domnnzr 16310 . . . . . . . 8  |-  ( R  e. Domn  ->  R  e. NzRing )
13 nzrrng 16287 . . . . . . . . . 10  |-  ( R  e. NzRing  ->  R  e.  Ring )
14 chrnzr 16766 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( R  e. NzRing 
<->  (chr `  R )  =/=  1 ) )
1513, 14syl 16 . . . . . . . . 9  |-  ( R  e. NzRing  ->  ( R  e. NzRing  <->  (chr
`  R )  =/=  1 ) )
1615ibi 233 . . . . . . . 8  |-  ( R  e. NzRing  ->  (chr `  R
)  =/=  1 )
1712, 16syl 16 . . . . . . 7  |-  ( R  e. Domn  ->  (chr `  R
)  =/=  1 )
1817adantr 452 . . . . . 6  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  =/=  1 )
19 eluz2b3 10505 . . . . . 6  |-  ( (chr
`  R )  e.  ( ZZ>= `  2 )  <->  ( (chr `  R )  e.  NN  /\  (chr `  R )  =/=  1
) )
2011, 18, 19sylanbrc 646 . . . . 5  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  ( ZZ>= ` 
2 ) )
212ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
22 eqid 2404 . . . . . . . . . . . . 13  |-  (flds  ZZ )  =  (flds  ZZ )
23 eqid 2404 . . . . . . . . . . . . 13  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
2422, 23zrhrhm 16748 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( ZRHom `  R )  e.  ( (flds  ZZ ) RingHom  R ) )
2521, 24syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ZRHom `  R )  e.  ( (flds  ZZ ) RingHom  R ) )
26 simprl 733 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
27 simprr 734 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
28 zsscn 10246 . . . . . . . . . . . . 13  |-  ZZ  C_  CC
29 cnfldbas 16662 . . . . . . . . . . . . . 14  |-  CC  =  ( Base ` fld )
3022, 29ressbas2 13475 . . . . . . . . . . . . 13  |-  ( ZZ  C_  CC  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
3128, 30ax-mp 8 . . . . . . . . . . . 12  |-  ZZ  =  ( Base `  (flds  ZZ ) )
32 zex 10247 . . . . . . . . . . . . 13  |-  ZZ  e.  _V
33 cnfldmul 16664 . . . . . . . . . . . . . 14  |-  x.  =  ( .r ` fld )
3422, 33ressmulr 13537 . . . . . . . . . . . . 13  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
3532, 34ax-mp 8 . . . . . . . . . . . 12  |-  x.  =  ( .r `  (flds  ZZ ) )
36 eqid 2404 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
3731, 35, 36rhmmul 15783 . . . . . . . . . . 11  |-  ( ( ( ZRHom `  R
)  e.  ( (flds  ZZ ) RingHom  R )  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( ( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) ) )
3825, 26, 27, 37syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  ( x  x.  y
) )  =  ( ( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) ) )
3938eqeq1d 2412 . . . . . . . . 9  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x ) ( .r
`  R ) ( ( ZRHom `  R
) `  y )
)  =  ( 0g
`  R ) ) )
40 simpll 731 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e. Domn )
41 eqid 2404 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
4231, 41rhmf 15782 . . . . . . . . . . . 12  |-  ( ( ZRHom `  R )  e.  ( (flds  ZZ ) RingHom  R )  ->  ( ZRHom `  R ) : ZZ --> ( Base `  R
) )
4325, 42syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ZRHom `  R ) : ZZ --> ( Base `  R )
)
4443, 26ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  x )  e.  (
Base `  R )
)
4543, 27ffvelrnd 5830 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  y )  e.  (
Base `  R )
)
46 eqid 2404 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
4741, 36, 46domneq0 16312 . . . . . . . . . 10  |-  ( ( R  e. Domn  /\  (
( ZRHom `  R
) `  x )  e.  ( Base `  R
)  /\  ( ( ZRHom `  R ) `  y )  e.  (
Base `  R )
)  ->  ( (
( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
4840, 44, 45, 47syl3anc 1184 . . . . . . . . 9  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
4939, 48bitrd 245 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
5049biimpd 199 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  ->  ( (
( ZRHom `  R
) `  x )  =  ( 0g `  R )  \/  (
( ZRHom `  R
) `  y )  =  ( 0g `  R ) ) ) )
51 zmulcl 10280 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
5251adantl 453 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
533, 23, 46chrdvds 16764 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  x.  y )  e.  ZZ )  -> 
( (chr `  R
)  ||  ( x  x.  y )  <->  ( ( ZRHom `  R ) `  ( x  x.  y
) )  =  ( 0g `  R ) ) )
5421, 52, 53syl2anc 643 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  (
x  x.  y )  <-> 
( ( ZRHom `  R ) `  (
x  x.  y ) )  =  ( 0g
`  R ) ) )
553, 23, 46chrdvds 16764 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  ZZ )  ->  (
(chr `  R )  ||  x  <->  ( ( ZRHom `  R ) `  x
)  =  ( 0g
`  R ) ) )
5621, 26, 55syl2anc 643 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  x  <->  ( ( ZRHom `  R
) `  x )  =  ( 0g `  R ) ) )
573, 23, 46chrdvds 16764 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ZZ )  ->  (
(chr `  R )  ||  y  <->  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) )
5821, 27, 57syl2anc 643 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  y  <->  ( ( ZRHom `  R
) `  y )  =  ( 0g `  R ) ) )
5956, 58orbi12d 691 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
(chr `  R )  ||  x  \/  (chr `  R )  ||  y
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
6050, 54, 593imtr4d 260 . . . . . 6  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) )
6160ralrimivva 2758 . . . . 5  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) )
62 isprm6 13064 . . . . 5  |-  ( (chr
`  R )  e. 
Prime 
<->  ( (chr `  R
)  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) ) )
6320, 61, 62sylanbrc 646 . . . 4  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  Prime )
6463ex 424 . . 3  |-  ( R  e. Domn  ->  ( (chr `  R )  =/=  0  ->  (chr `  R )  e.  Prime ) )
651, 64syl5bir 210 . 2  |-  ( R  e. Domn  ->  ( -.  (chr `  R )  =  0  ->  (chr `  R
)  e.  Prime )
)
6665orrd 368 1  |-  ( R  e. Domn  ->  ( (chr `  R )  =  0  \/  (chr `  R
)  e.  Prime )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    \ cdif 3277    C_ wss 3280   {csn 3774   class class class wbr 4172   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    x. cmul 8951   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444    || cdivides 12807   Primecprime 13034   Basecbs 13424   ↾s cress 13425   .rcmulr 13485   0gc0g 13678   Ringcrg 15615   RingHom crh 15772  NzRingcnzr 16283  Domncdomn 16295  ℂfldccnfld 16658   ZRHomczrh 16733  chrcchr 16735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-rp 10569  df-fz 11000  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-prm 13035  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-od 15122  df-cmn 15369  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-rnghom 15774  df-subrg 15821  df-nzr 16284  df-domn 16299  df-cnfld 16659  df-zrh 16737  df-chr 16739
  Copyright terms: Public domain W3C validator