MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domnchr Structured version   Unicode version

Theorem domnchr 18695
Description: The characteristic of a domain can only be zero or a prime. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
domnchr  |-  ( R  e. Domn  ->  ( (chr `  R )  =  0  \/  (chr `  R
)  e.  Prime )
)

Proof of Theorem domnchr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2654 . . 3  |-  ( (chr
`  R )  =/=  0  <->  -.  (chr `  R
)  =  0 )
2 domnring 18071 . . . . . . . . . 10  |-  ( R  e. Domn  ->  R  e.  Ring )
3 eqid 2457 . . . . . . . . . . 11  |-  (chr `  R )  =  (chr
`  R )
43chrcl 18689 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  (chr `  R )  e.  NN0 )
52, 4syl 16 . . . . . . . . 9  |-  ( R  e. Domn  ->  (chr `  R
)  e.  NN0 )
65adantr 465 . . . . . . . 8  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  NN0 )
7 simpr 461 . . . . . . . 8  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  =/=  0 )
8 eldifsn 4157 . . . . . . . 8  |-  ( (chr
`  R )  e.  ( NN0  \  {
0 } )  <->  ( (chr `  R )  e.  NN0  /\  (chr `  R )  =/=  0 ) )
96, 7, 8sylanbrc 664 . . . . . . 7  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  ( NN0  \  { 0 } ) )
10 dfn2 10829 . . . . . . 7  |-  NN  =  ( NN0  \  { 0 } )
119, 10syl6eleqr 2556 . . . . . 6  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  NN )
12 domnnzr 18070 . . . . . . . 8  |-  ( R  e. Domn  ->  R  e. NzRing )
13 nzrring 18035 . . . . . . . . . 10  |-  ( R  e. NzRing  ->  R  e.  Ring )
14 chrnzr 18693 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  ( R  e. NzRing 
<->  (chr `  R )  =/=  1 ) )
1513, 14syl 16 . . . . . . . . 9  |-  ( R  e. NzRing  ->  ( R  e. NzRing  <->  (chr
`  R )  =/=  1 ) )
1615ibi 241 . . . . . . . 8  |-  ( R  e. NzRing  ->  (chr `  R
)  =/=  1 )
1712, 16syl 16 . . . . . . 7  |-  ( R  e. Domn  ->  (chr `  R
)  =/=  1 )
1817adantr 465 . . . . . 6  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  =/=  1 )
19 eluz2b3 11180 . . . . . 6  |-  ( (chr
`  R )  e.  ( ZZ>= `  2 )  <->  ( (chr `  R )  e.  NN  /\  (chr `  R )  =/=  1
) )
2011, 18, 19sylanbrc 664 . . . . 5  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  ( ZZ>= ` 
2 ) )
212ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
22 eqid 2457 . . . . . . . . . . . . 13  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
2322zrhrhm 18675 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( ZRHom `  R )  e.  (ring RingHom  R
) )
2421, 23syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ZRHom `  R )  e.  (ring RingHom  R
) )
25 simprl 756 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
26 simprr 757 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
27 zringbas 18620 . . . . . . . . . . . 12  |-  ZZ  =  ( Base ` ring )
28 zringmulr 18623 . . . . . . . . . . . 12  |-  x.  =  ( .r ` ring )
29 eqid 2457 . . . . . . . . . . . 12  |-  ( .r
`  R )  =  ( .r `  R
)
3027, 28, 29rhmmul 17502 . . . . . . . . . . 11  |-  ( ( ( ZRHom `  R
)  e.  (ring RingHom  R )  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( ( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) ) )
3124, 25, 26, 30syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  ( x  x.  y
) )  =  ( ( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) ) )
3231eqeq1d 2459 . . . . . . . . 9  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x ) ( .r
`  R ) ( ( ZRHom `  R
) `  y )
)  =  ( 0g
`  R ) ) )
33 simpll 753 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e. Domn )
34 eqid 2457 . . . . . . . . . . . . 13  |-  ( Base `  R )  =  (
Base `  R )
3527, 34rhmf 17501 . . . . . . . . . . . 12  |-  ( ( ZRHom `  R )  e.  (ring RingHom  R )  ->  ( ZRHom `  R ) : ZZ --> ( Base `  R
) )
3624, 35syl 16 . . . . . . . . . . 11  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ZRHom `  R ) : ZZ --> ( Base `  R )
)
3736, 25ffvelrnd 6033 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  x )  e.  (
Base `  R )
)
3836, 26ffvelrnd 6033 . . . . . . . . . 10  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( ZRHom `  R ) `  y )  e.  (
Base `  R )
)
39 eqid 2457 . . . . . . . . . . 11  |-  ( 0g
`  R )  =  ( 0g `  R
)
4034, 29, 39domneq0 18072 . . . . . . . . . 10  |-  ( ( R  e. Domn  /\  (
( ZRHom `  R
) `  x )  e.  ( Base `  R
)  /\  ( ( ZRHom `  R ) `  y )  e.  (
Base `  R )
)  ->  ( (
( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
4133, 37, 38, 40syl3anc 1228 . . . . . . . . 9  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ( ZRHom `  R ) `  x
) ( .r `  R ) ( ( ZRHom `  R ) `  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
4232, 41bitrd 253 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
4342biimpd 207 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
( ZRHom `  R
) `  ( x  x.  y ) )  =  ( 0g `  R
)  ->  ( (
( ZRHom `  R
) `  x )  =  ( 0g `  R )  \/  (
( ZRHom `  R
) `  y )  =  ( 0g `  R ) ) ) )
44 zmulcl 10933 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
4544adantl 466 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
463, 22, 39chrdvds 18691 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  x.  y )  e.  ZZ )  -> 
( (chr `  R
)  ||  ( x  x.  y )  <->  ( ( ZRHom `  R ) `  ( x  x.  y
) )  =  ( 0g `  R ) ) )
4721, 45, 46syl2anc 661 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  (
x  x.  y )  <-> 
( ( ZRHom `  R ) `  (
x  x.  y ) )  =  ( 0g
`  R ) ) )
483, 22, 39chrdvds 18691 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  ZZ )  ->  (
(chr `  R )  ||  x  <->  ( ( ZRHom `  R ) `  x
)  =  ( 0g
`  R ) ) )
4921, 25, 48syl2anc 661 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  x  <->  ( ( ZRHom `  R
) `  x )  =  ( 0g `  R ) ) )
503, 22, 39chrdvds 18691 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  y  e.  ZZ )  ->  (
(chr `  R )  ||  y  <->  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) )
5121, 26, 50syl2anc 661 . . . . . . . 8  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  y  <->  ( ( ZRHom `  R
) `  y )  =  ( 0g `  R ) ) )
5249, 51orbi12d 709 . . . . . . 7  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
(chr `  R )  ||  x  \/  (chr `  R )  ||  y
)  <->  ( ( ( ZRHom `  R ) `  x )  =  ( 0g `  R )  \/  ( ( ZRHom `  R ) `  y
)  =  ( 0g
`  R ) ) ) )
5343, 47, 523imtr4d 268 . . . . . 6  |-  ( ( ( R  e. Domn  /\  (chr `  R )  =/=  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) )
5453ralrimivva 2878 . . . . 5  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) )
55 isprm6 14261 . . . . 5  |-  ( (chr
`  R )  e. 
Prime 
<->  ( (chr `  R
)  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( (chr `  R )  ||  (
x  x.  y )  ->  ( (chr `  R )  ||  x  \/  (chr `  R )  ||  y ) ) ) )
5620, 54, 55sylanbrc 664 . . . 4  |-  ( ( R  e. Domn  /\  (chr `  R )  =/=  0
)  ->  (chr `  R
)  e.  Prime )
5756ex 434 . . 3  |-  ( R  e. Domn  ->  ( (chr `  R )  =/=  0  ->  (chr `  R )  e.  Prime ) )
581, 57syl5bir 218 . 2  |-  ( R  e. Domn  ->  ( -.  (chr `  R )  =  0  ->  (chr `  R
)  e.  Prime )
)
5958orrd 378 1  |-  ( R  e. Domn  ->  ( (chr `  R )  =  0  \/  (chr `  R
)  e.  Prime )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807    \ cdif 3468   {csn 4032   class class class wbr 4456   -->wf 5590   ` cfv 5594  (class class class)co 6296   0cc0 9509   1c1 9510    x. cmul 9514   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106    || cdvds 13997   Primecprime 14228   Basecbs 14643   .rcmulr 14712   0gc0g 14856   Ringcrg 17324   RingHom crh 17487  NzRingcnzr 18031  Domncdomn 18054  ℤringzring 18614   ZRHomczrh 18663  chrcchr 18665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-rp 11246  df-fz 11698  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-dvds 13998  df-gcd 14156  df-prm 14229  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-0g 14858  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mhm 16092  df-grp 16183  df-minusg 16184  df-sbg 16185  df-mulg 16186  df-subg 16324  df-ghm 16391  df-od 16679  df-cmn 16926  df-mgp 17268  df-ur 17280  df-ring 17326  df-cring 17327  df-rnghom 17490  df-subrg 17553  df-nzr 18032  df-domn 18058  df-cnfld 18547  df-zring 18615  df-zrh 18667  df-chr 18669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator