MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domeng Unicode version

Theorem domeng 6762
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem domeng
StepHypRef Expression
1 breq2 3924 . 2  |-  ( y  =  B  ->  ( A  ~<_  y  <->  A  ~<_  B ) )
2 sseq2 3121 . . . 4  |-  ( y  =  B  ->  (
x  C_  y  <->  x  C_  B
) )
32anbi2d 687 . . 3  |-  ( y  =  B  ->  (
( A  ~~  x  /\  x  C_  y )  <-> 
( A  ~~  x  /\  x  C_  B ) ) )
43exbidv 2005 . 2  |-  ( y  =  B  ->  ( E. x ( A  ~~  x  /\  x  C_  y
)  <->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
5 vex 2730 . . 3  |-  y  e. 
_V
65domen 6761 . 2  |-  ( A  ~<_  y  <->  E. x ( A 
~~  x  /\  x  C_  y ) )
71, 4, 6vtoclbg 2782 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    C_ wss 3078   class class class wbr 3920    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  undom  6835  mapdom1  6911  mapdom2  6917  domfi  6969  isfinite2  7000  unxpwdom  7187  domfin4  7821  pwfseq  8166  grudomon  8319  ufldom  17489  erdsze2lem1  22905
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-xp 4594  df-rel 4595  df-cnv 4596  df-dm 4598  df-rn 4599  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator