Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochss Structured version   Unicode version

Theorem dochss 37505
Description: Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
dochss.h  |-  H  =  ( LHyp `  K
)
dochss.u  |-  U  =  ( ( DVecH `  K
) `  W )
dochss.v  |-  V  =  ( Base `  U
)
dochss.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
Assertion
Ref Expression
dochss  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  C_  (  ._|_  `  X ) )

Proof of Theorem dochss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp1l 1018 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  HL )
2 hlclat 35496 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  CLat )
31, 2syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  CLat )
4 ssrab2 3499 . . . . . 6  |-  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)
54a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )
6 simpll3 1035 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  X  C_  Y
)
7 simpr 459 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  Y  C_  (
( ( DIsoH `  K
) `  W ) `  z ) )
86, 7sstrd 3427 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  /\  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z )
)  ->  X  C_  (
( ( DIsoH `  K
) `  W ) `  z ) )
98ex 432 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  /\  z  e.  ( Base `  K
) )  ->  ( Y  C_  ( ( (
DIsoH `  K ) `  W ) `  z
)  ->  X  C_  (
( ( DIsoH `  K
) `  W ) `  z ) ) )
109ss2rabdv 3495 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )
11 eqid 2382 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
12 eqid 2382 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
13 eqid 2382 . . . . . 6  |-  ( glb `  K )  =  ( glb `  K )
1411, 12, 13clatglbss 15874 . . . . 5  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)  /\  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )
153, 5, 10, 14syl3anc 1226 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )
16 hlop 35500 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
171, 16syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  K  e.  OP )
1811, 13clatglbcl 15861 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
193, 4, 18sylancl 660 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
20 ssrab2 3499 . . . . . 6  |-  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
)
2111, 13clatglbcl 15861 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
z  e.  ( Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) }  C_  ( Base `  K
) )  ->  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
223, 20, 21sylancl 660 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( glb `  K ) `  {
z  e.  ( Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)
23 eqid 2382 . . . . . 6  |-  ( oc
`  K )  =  ( oc `  K
)
2411, 12, 23oplecon3b 35338 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  <->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
2517, 19, 22, 24syl3anc 1226 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( ( glb `  K ) `
 { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ( le
`  K ) ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  <->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
2615, 25mpbid 210 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) )
27 simp1 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( K  e.  HL  /\  W  e.  H ) )
2811, 23opoccl 35332 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
2917, 22, 28syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
3011, 23opoccl 35332 . . . . 5  |-  ( ( K  e.  OP  /\  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } )  e.  (
Base `  K )
)  ->  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
3117, 19, 30syl2anc 659 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )
32 dochss.h . . . . 5  |-  H  =  ( LHyp `  K
)
33 eqid 2382 . . . . 5  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
3411, 12, 32, 33dihord 37404 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) )  e.  ( Base `  K
) )  ->  (
( ( ( DIsoH `  K ) `  W
) `  ( ( oc `  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) 
C_  ( ( (
DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  <->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
3527, 29, 31, 34syl3anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  C_  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  <->  ( ( oc
`  K ) `  ( ( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ( le `  K ) ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
3626, 35mpbird 232 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  ( ( (
DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) )  C_  ( (
( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
37 dochss.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
38 dochss.v . . . 4  |-  V  =  ( Base `  U
)
39 dochss.o . . . 4  |-  ._|_  =  ( ( ocH `  K
) `  W )
4011, 13, 23, 32, 33, 37, 38, 39dochval 37491 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V
)  ->  (  ._|_  `  Y )  =  ( ( ( DIsoH `  K
) `  W ) `  ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  Y  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
41403adant3 1014 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  =  ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  Y  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
42 simp3 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  X  C_  Y
)
43 simp2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  Y  C_  V
)
4442, 43sstrd 3427 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  X  C_  V
)
4511, 13, 23, 32, 33, 37, 38, 39dochval 37491 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  C_  V
)  ->  (  ._|_  `  X )  =  ( ( ( DIsoH `  K
) `  W ) `  ( ( oc `  K ) `  (
( glb `  K
) `  { z  e.  ( Base `  K
)  |  X  C_  ( ( ( DIsoH `  K ) `  W
) `  z ) } ) ) ) )
4627, 44, 45syl2anc 659 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  X
)  =  ( ( ( DIsoH `  K ) `  W ) `  (
( oc `  K
) `  ( ( glb `  K ) `  { z  e.  (
Base `  K )  |  X  C_  ( ( ( DIsoH `  K ) `  W ) `  z
) } ) ) ) )
4736, 41, 463sstr4d 3460 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  C_  V  /\  X  C_  Y )  ->  (  ._|_  `  Y
)  C_  (  ._|_  `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   {crab 2736    C_ wss 3389   class class class wbr 4367   ` cfv 5496   Basecbs 14634   lecple 14709   occoc 14710   glbcglb 15689   CLatccla 15854   OPcops 35310   HLchlt 35488   LHypclh 36121   DVecHcdvh 37218   DIsoHcdih 37368   ocHcoch 37487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-riotaBAD 35097
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-tpos 6873  df-undef 6920  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-n0 10713  df-z 10782  df-uz 11002  df-fz 11594  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-sca 14718  df-vsca 14719  df-0g 14849  df-preset 15674  df-poset 15692  df-plt 15705  df-lub 15721  df-glb 15722  df-join 15723  df-meet 15724  df-p0 15786  df-p1 15787  df-lat 15793  df-clat 15855  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-grp 16174  df-minusg 16175  df-sbg 16176  df-subg 16315  df-cntz 16472  df-lsm 16773  df-cmn 16917  df-abl 16918  df-mgp 17255  df-ur 17267  df-ring 17313  df-oppr 17385  df-dvdsr 17403  df-unit 17404  df-invr 17434  df-dvr 17445  df-drng 17511  df-lmod 17627  df-lss 17692  df-lsp 17731  df-lvec 17862  df-oposet 35314  df-ol 35316  df-oml 35317  df-covers 35404  df-ats 35405  df-atl 35436  df-cvlat 35460  df-hlat 35489  df-llines 35635  df-lplanes 35636  df-lvols 35637  df-lines 35638  df-psubsp 35640  df-pmap 35641  df-padd 35933  df-lhyp 36125  df-laut 36126  df-ldil 36241  df-ltrn 36242  df-trl 36297  df-tendo 36894  df-edring 36896  df-disoa 37169  df-dvech 37219  df-dib 37279  df-dic 37313  df-dih 37369  df-doch 37488
This theorem is referenced by:  dochsscl  37508  dochord  37510  dihoml4  37517  dochocsp  37519  dochdmj1  37530  dochpolN  37630  lclkrlem2p  37662  lclkrslem1  37677  lclkrslem2  37678  lcfrvalsnN  37681  mapdsn  37781
  Copyright terms: Public domain W3C validator