Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3 Structured version   Unicode version

Theorem dnnumch3 29397
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
dnnumch.a  |-  ( ph  ->  A  e.  V )
dnnumch.g  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
Assertion
Ref Expression
dnnumch3  |-  ( ph  ->  ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) : A -1-1-> On )
Distinct variable groups:    x, F, y    x, G, y, z   
x, A, y, z    ph, x
Allowed substitution hints:    ph( y, z)    F( z)    V( x, y, z)

Proof of Theorem dnnumch3
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5187 . . . . 5  |-  ( `' F " { x } )  C_  dom  F
2 dnnumch.f . . . . . . 7  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
32tfr1 6854 . . . . . 6  |-  F  Fn  On
4 fndm 5508 . . . . . 6  |-  ( F  Fn  On  ->  dom  F  =  On )
53, 4ax-mp 5 . . . . 5  |-  dom  F  =  On
61, 5sseqtri 3386 . . . 4  |-  ( `' F " { x } )  C_  On
7 dnnumch.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
8 dnnumch.g . . . . . . 7  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
92, 7, 8dnnumch2 29395 . . . . . 6  |-  ( ph  ->  A  C_  ran  F )
109sselda 3354 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  ran  F )
11 inisegn0 29393 . . . . 5  |-  ( x  e.  ran  F  <->  ( `' F " { x }
)  =/=  (/) )
1210, 11sylib 196 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( `' F " { x } )  =/=  (/) )
13 oninton 6409 . . . 4  |-  ( ( ( `' F " { x } ) 
C_  On  /\  ( `' F " { x } )  =/=  (/) )  ->  |^| ( `' F " { x } )  e.  On )
146, 12, 13sylancr 663 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  |^| ( `' F " { x } )  e.  On )
15 eqid 2441 . . 3  |-  ( x  e.  A  |->  |^| ( `' F " { x } ) )  =  ( x  e.  A  |-> 
|^| ( `' F " { x } ) )
1614, 15fmptd 5865 . 2  |-  ( ph  ->  ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) : A --> On )
172, 7, 8dnnumch3lem 29396 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  v )  =  |^| ( `' F " { v } ) )
1817adantrr 716 . . . . 5  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  v )  =  |^| ( `' F " { v } ) )
192, 7, 8dnnumch3lem 29396 . . . . . 6  |-  ( (
ph  /\  w  e.  A )  ->  (
( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  =  |^| ( `' F " { w } ) )
2019adantrl 715 . . . . 5  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  w )  =  |^| ( `' F " { w } ) )
2118, 20eqeq12d 2455 . . . 4  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( ( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  v )  =  ( ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  <->  |^| ( `' F " { v } )  =  |^| ( `' F " { w } ) ) )
22 fveq2 5689 . . . . . . 7  |-  ( |^| ( `' F " { v } )  =  |^| ( `' F " { w } )  ->  ( F `  |^| ( `' F " { v } ) )  =  ( F `  |^| ( `' F " { w } ) ) )
2322adantl 466 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  A  /\  w  e.  A )
)  /\  |^| ( `' F " { v } )  =  |^| ( `' F " { w } ) )  -> 
( F `  |^| ( `' F " { v } ) )  =  ( F `  |^| ( `' F " { w } ) ) )
24 cnvimass 5187 . . . . . . . . . . 11  |-  ( `' F " { v } )  C_  dom  F
2524, 5sseqtri 3386 . . . . . . . . . 10  |-  ( `' F " { v } )  C_  On
269sselda 3354 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  ran  F )
27 inisegn0 29393 . . . . . . . . . . 11  |-  ( v  e.  ran  F  <->  ( `' F " { v } )  =/=  (/) )
2826, 27sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  A )  ->  ( `' F " { v } )  =/=  (/) )
29 onint 6404 . . . . . . . . . 10  |-  ( ( ( `' F " { v } ) 
C_  On  /\  ( `' F " { v } )  =/=  (/) )  ->  |^| ( `' F " { v } )  e.  ( `' F " { v } ) )
3025, 28, 29sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  |^| ( `' F " { v } )  e.  ( `' F " { v } ) )
31 fniniseg 5822 . . . . . . . . . . 11  |-  ( F  Fn  On  ->  ( |^| ( `' F " { v } )  e.  ( `' F " { v } )  <-> 
( |^| ( `' F " { v } )  e.  On  /\  ( F `  |^| ( `' F " { v } ) )  =  v ) ) )
323, 31ax-mp 5 . . . . . . . . . 10  |-  ( |^| ( `' F " { v } )  e.  ( `' F " { v } )  <->  ( |^| ( `' F " { v } )  e.  On  /\  ( F `  |^| ( `' F " { v } ) )  =  v ) )
3332simprbi 464 . . . . . . . . 9  |-  ( |^| ( `' F " { v } )  e.  ( `' F " { v } )  ->  ( F `  |^| ( `' F " { v } ) )  =  v )
3430, 33syl 16 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  |^| ( `' F " { v } ) )  =  v )
3534adantrr 716 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( F `  |^| ( `' F " { v } ) )  =  v )
3635adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  A  /\  w  e.  A )
)  /\  |^| ( `' F " { v } )  =  |^| ( `' F " { w } ) )  -> 
( F `  |^| ( `' F " { v } ) )  =  v )
37 cnvimass 5187 . . . . . . . . . . 11  |-  ( `' F " { w } )  C_  dom  F
3837, 5sseqtri 3386 . . . . . . . . . 10  |-  ( `' F " { w } )  C_  On
399sselda 3354 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  F )
40 inisegn0 29393 . . . . . . . . . . 11  |-  ( w  e.  ran  F  <->  ( `' F " { w }
)  =/=  (/) )
4139, 40sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  A )  ->  ( `' F " { w } )  =/=  (/) )
42 onint 6404 . . . . . . . . . 10  |-  ( ( ( `' F " { w } ) 
C_  On  /\  ( `' F " { w } )  =/=  (/) )  ->  |^| ( `' F " { w } )  e.  ( `' F " { w } ) )
4338, 41, 42sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  A )  ->  |^| ( `' F " { w } )  e.  ( `' F " { w } ) )
44 fniniseg 5822 . . . . . . . . . . 11  |-  ( F  Fn  On  ->  ( |^| ( `' F " { w } )  e.  ( `' F " { w } )  <-> 
( |^| ( `' F " { w } )  e.  On  /\  ( F `  |^| ( `' F " { w } ) )  =  w ) ) )
453, 44ax-mp 5 . . . . . . . . . 10  |-  ( |^| ( `' F " { w } )  e.  ( `' F " { w } )  <->  ( |^| ( `' F " { w } )  e.  On  /\  ( F `  |^| ( `' F " { w } ) )  =  w ) )
4645simprbi 464 . . . . . . . . 9  |-  ( |^| ( `' F " { w } )  e.  ( `' F " { w } )  ->  ( F `  |^| ( `' F " { w } ) )  =  w )
4743, 46syl 16 . . . . . . . 8  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  |^| ( `' F " { w } ) )  =  w )
4847adantrl 715 . . . . . . 7  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( F `  |^| ( `' F " { w } ) )  =  w )
4948adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  A  /\  w  e.  A )
)  /\  |^| ( `' F " { v } )  =  |^| ( `' F " { w } ) )  -> 
( F `  |^| ( `' F " { w } ) )  =  w )
5023, 36, 493eqtr3d 2481 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  A  /\  w  e.  A )
)  /\  |^| ( `' F " { v } )  =  |^| ( `' F " { w } ) )  -> 
v  =  w )
5150ex 434 . . . 4  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( |^| ( `' F " { v } )  =  |^| ( `' F " { w } )  ->  v  =  w ) )
5221, 51sylbid 215 . . 3  |-  ( (
ph  /\  ( v  e.  A  /\  w  e.  A ) )  -> 
( ( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  v )  =  ( ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  ->  v  =  w ) )
5352ralrimivva 2806 . 2  |-  ( ph  ->  A. v  e.  A  A. w  e.  A  ( ( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  v )  =  ( ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  ->  v  =  w ) )
54 dff13 5969 . 2  |-  ( ( x  e.  A  |->  |^| ( `' F " { x } ) ) : A -1-1-> On  <->  ( ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) : A --> On  /\  A. v  e.  A  A. w  e.  A  (
( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  v )  =  ( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  w )  ->  v  =  w ) ) )
5516, 53, 54sylanbrc 664 1  |-  ( ph  ->  ( x  e.  A  |-> 
|^| ( `' F " { x } ) ) : A -1-1-> On )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2604   A.wral 2713   _Vcvv 2970    \ cdif 3323    C_ wss 3326   (/)c0 3635   ~Pcpw 3858   {csn 3875   |^|cint 4126    e. cmpt 4348   Oncon0 4717   `'ccnv 4837   dom cdm 4838   ran crn 4839   "cima 4841    Fn wfn 5411   -->wf 5412   -1-1->wf1 5413   ` cfv 5416  recscrecs 6829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-recs 6830
This theorem is referenced by:  dnwech  29398
  Copyright terms: Public domain W3C validator