MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmun Unicode version

Theorem dmun 5035
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )

Proof of Theorem dmun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3568 . . 3  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  ( E. x  y A x  \/  E. x  y B x ) }
2 brun 4218 . . . . . 6  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
32exbii 1589 . . . . 5  |-  ( E. x  y ( A  u.  B ) x  <->  E. x ( y A x  \/  y B x ) )
4 19.43 1612 . . . . 5  |-  ( E. x ( y A x  \/  y B x )  <->  ( E. x  y A x  \/  E. x  y B x ) )
53, 4bitr2i 242 . . . 4  |-  ( ( E. x  y A x  \/  E. x  y B x )  <->  E. x  y ( A  u.  B ) x )
65abbii 2516 . . 3  |-  { y  |  ( E. x  y A x  \/  E. x  y B x ) }  =  {
y  |  E. x  y ( A  u.  B ) x }
71, 6eqtri 2424 . 2  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  E. x  y ( A  u.  B ) x }
8 df-dm 4847 . . 3  |-  dom  A  =  { y  |  E. x  y A x }
9 df-dm 4847 . . 3  |-  dom  B  =  { y  |  E. x  y B x }
108, 9uneq12i 3459 . 2  |-  ( dom 
A  u.  dom  B
)  =  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )
11 df-dm 4847 . 2  |-  dom  ( A  u.  B )  =  { y  |  E. x  y ( A  u.  B ) x }
127, 10, 113eqtr4ri 2435 1  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 358   E.wex 1547    = wceq 1649   {cab 2390    u. cun 3278   class class class wbr 4172   dom cdm 4837
This theorem is referenced by:  rnun  5239  dmpropg  5302  dmtpop  5305  fntpg  5465  fnun  5510  tfrlem10  6607  sbthlem5  7180  fodomr  7217  axdc3lem4  8289  hashfun  11655  s4dom  11821  strlemor1  13511  strleun  13514  xpsfrnel2  13745  wfrlem13  25482  wfrlem16  25485  fixun  25663  mvdco  27256  bnj1416  29114
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-v 2918  df-un 3285  df-br 4173  df-dm 4847
  Copyright terms: Public domain W3C validator