MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpos Structured version   Unicode version

Theorem dmtpos 6752
Description: The domain of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dmtpos  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )

Proof of Theorem dmtpos
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nelxp 4862 . . . . 5  |-  -.  (/)  e.  ( _V  X.  _V )
2 ssel 3345 . . . . 5  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  ( (/) 
e.  dom  F  ->  (/)  e.  ( _V  X.  _V ) ) )
31, 2mtoi 178 . . . 4  |-  ( dom 
F  C_  ( _V  X.  _V )  ->  -.  (/) 
e.  dom  F )
4 df-rel 4842 . . . 4  |-  ( Rel 
dom  F  <->  dom  F  C_  ( _V  X.  _V ) )
5 reldmtpos 6748 . . . 4  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
63, 4, 53imtr4i 266 . . 3  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
7 relcnv 5201 . . 3  |-  Rel  `' dom  F
86, 7jctir 538 . 2  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  /\  Rel  `' dom  F ) )
9 vex 2970 . . . . . 6  |-  z  e. 
_V
10 brtpos 6749 . . . . . 6  |-  ( z  e.  _V  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
119, 10mp1i 12 . . . . 5  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
1211exbidv 1680 . . . 4  |-  ( Rel 
dom  F  ->  ( E. z <. x ,  y
>.tpos  F z  <->  E. z <. y ,  x >. F z ) )
13 opex 4551 . . . . 5  |-  <. x ,  y >.  e.  _V
1413eldm 5032 . . . 4  |-  ( <.
x ,  y >.  e.  dom tpos  F  <->  E. z <. x ,  y >.tpos  F z )
15 vex 2970 . . . . . 6  |-  x  e. 
_V
16 vex 2970 . . . . . 6  |-  y  e. 
_V
1715, 16opelcnv 5016 . . . . 5  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  <. y ,  x >.  e.  dom  F )
18 opex 4551 . . . . . 6  |-  <. y ,  x >.  e.  _V
1918eldm 5032 . . . . 5  |-  ( <.
y ,  x >.  e. 
dom  F  <->  E. z <. y ,  x >. F z )
2017, 19bitri 249 . . . 4  |-  ( <.
x ,  y >.  e.  `' dom  F  <->  E. z <. y ,  x >. F z )
2112, 14, 203bitr4g 288 . . 3  |-  ( Rel 
dom  F  ->  ( <.
x ,  y >.  e.  dom tpos  F  <->  <. x ,  y
>.  e.  `' dom  F
) )
2221eqrelrdv2 4934 . 2  |-  ( ( ( Rel  dom tpos  F  /\  Rel  `' dom  F )  /\  Rel  dom  F )  ->  dom tpos  F  =  `' dom  F )
238, 22mpancom 669 1  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   _Vcvv 2967    C_ wss 3323   (/)c0 3632   <.cop 3878   class class class wbr 4287    X. cxp 4833   `'ccnv 4834   dom cdm 4835   Rel wrel 4840  tpos ctpos 6739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-fv 5421  df-tpos 6740
This theorem is referenced by:  rntpos  6753  dftpos2  6757  dftpos3  6758  tposfn2  6762
  Copyright terms: Public domain W3C validator