MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtpop Structured version   Unicode version

Theorem dmtpop 5475
Description: The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
dmsnop.1  |-  B  e. 
_V
dmprop.1  |-  D  e. 
_V
dmtpop.1  |-  F  e. 
_V
Assertion
Ref Expression
dmtpop  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }

Proof of Theorem dmtpop
StepHypRef Expression
1 df-tp 4025 . . . 4  |-  { <. A ,  B >. ,  <. C ,  D >. ,  <. E ,  F >. }  =  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )
21dmeqi 5195 . . 3  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  dom  ( {
<. A ,  B >. , 
<. C ,  D >. }  u.  { <. E ,  F >. } )
3 dmun 5200 . . 3  |-  dom  ( { <. A ,  B >. ,  <. C ,  D >. }  u.  { <. E ,  F >. } )  =  ( dom  { <. A ,  B >. , 
<. C ,  D >. }  u.  dom  { <. E ,  F >. } )
4 dmsnop.1 . . . . 5  |-  B  e. 
_V
5 dmprop.1 . . . . 5  |-  D  e. 
_V
64, 5dmprop 5474 . . . 4  |-  dom  { <. A ,  B >. , 
<. C ,  D >. }  =  { A ,  C }
7 dmtpop.1 . . . . 5  |-  F  e. 
_V
87dmsnop 5473 . . . 4  |-  dom  { <. E ,  F >. }  =  { E }
96, 8uneq12i 3649 . . 3  |-  ( dom 
{ <. A ,  B >. ,  <. C ,  D >. }  u.  dom  { <. E ,  F >. } )  =  ( { A ,  C }  u.  { E } )
102, 3, 93eqtri 2493 . 2  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  ( { A ,  C }  u.  { E } )
11 df-tp 4025 . 2  |-  { A ,  C ,  E }  =  ( { A ,  C }  u.  { E } )
1210, 11eqtr4i 2492 1  |-  dom  { <. A ,  B >. , 
<. C ,  D >. , 
<. E ,  F >. }  =  { A ,  C ,  E }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374    e. wcel 1762   _Vcvv 3106    u. cun 3467   {csn 4020   {cpr 4022   {ctp 4024   <.cop 4026   dom cdm 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-br 4441  df-dm 5002
This theorem is referenced by:  fntp  5635
  Copyright terms: Public domain W3C validator