MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopg Structured version   Unicode version

Theorem dmsnopg 5470
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)

Proof of Theorem dmsnopg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3109 . . . . . 6  |-  x  e. 
_V
2 vex 3109 . . . . . 6  |-  y  e. 
_V
31, 2opth1 4713 . . . . 5  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  x  =  A )
43exlimiv 1693 . . . 4  |-  ( E. y <. x ,  y
>.  =  <. A ,  B >.  ->  x  =  A )
5 opeq1 4206 . . . . 5  |-  ( x  =  A  ->  <. x ,  B >.  =  <. A ,  B >. )
6 opeq2 4207 . . . . . . 7  |-  ( y  =  B  ->  <. x ,  y >.  =  <. x ,  B >. )
76eqeq1d 2462 . . . . . 6  |-  ( y  =  B  ->  ( <. x ,  y >.  =  <. A ,  B >.  <->  <. x ,  B >.  = 
<. A ,  B >. ) )
87spcegv 3192 . . . . 5  |-  ( B  e.  V  ->  ( <. x ,  B >.  = 
<. A ,  B >.  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
95, 8syl5 32 . . . 4  |-  ( B  e.  V  ->  (
x  =  A  ->  E. y <. x ,  y
>.  =  <. A ,  B >. ) )
104, 9impbid2 204 . . 3  |-  ( B  e.  V  ->  ( E. y <. x ,  y
>.  =  <. A ,  B >. 
<->  x  =  A ) )
111eldm2 5192 . . . 4  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  e.  { <. A ,  B >. } )
12 opex 4704 . . . . . 6  |-  <. x ,  y >.  e.  _V
1312elsnc 4044 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
1413exbii 1639 . . . 4  |-  ( E. y <. x ,  y
>.  e.  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
1511, 14bitri 249 . . 3  |-  ( x  e.  dom  { <. A ,  B >. }  <->  E. y <. x ,  y >.  =  <. A ,  B >. )
16 elsn 4034 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
1710, 15, 163bitr4g 288 . 2  |-  ( B  e.  V  ->  (
x  e.  dom  { <. A ,  B >. }  <-> 
x  e.  { A } ) )
1817eqrdv 2457 1  |-  ( B  e.  V  ->  dom  {
<. A ,  B >. }  =  { A }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374   E.wex 1591    e. wcel 1762   {csn 4020   <.cop 4026   dom cdm 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-br 4441  df-dm 5002
This theorem is referenced by:  dmsnopss  5471  dmpropg  5472  dmsnop  5473  rnsnopg  5478  fnsng  5626  funprg  5628  funtpg  5629  fntpg  5634  suppsnop  6905  funsnfsupp  7842  setsval  14503  eupap1  24638  bnj96  32877  bnj535  32902
  Copyright terms: Public domain W3C validator