MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnop Structured version   Unicode version

Theorem dmsnop 5472
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
dmsnop.1  |-  B  e. 
_V
Assertion
Ref Expression
dmsnop  |-  dom  { <. A ,  B >. }  =  { A }

Proof of Theorem dmsnop
StepHypRef Expression
1 dmsnop.1 . 2  |-  B  e. 
_V
2 dmsnopg 5469 . 2  |-  ( B  e.  _V  ->  dom  {
<. A ,  B >. }  =  { A }
)
31, 2ax-mp 5 1  |-  dom  { <. A ,  B >. }  =  { A }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1383    e. wcel 1804   _Vcvv 3095   {csn 4014   <.cop 4020   dom cdm 4989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-br 4438  df-dm 4999
This theorem is referenced by:  dmtpop  5474  dmsnsnsn  5476  op1sta  5480  funtp  5630  tfrlem10  7058  ac6sfi  7766  dcomex  8830  axdc3lem4  8836  wlkntrllem1  24433  eupap1  24848  ablosn  25221  subfacp1lem2a  28497  subfacp1lem5  28501  wfrlem13  29330  wfrlem16  29333  bnj1416  33828  bnj1421  33831
  Copyright terms: Public domain W3C validator