MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmopab Structured version   Unicode version

Theorem dmopab 5056
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
dmopab  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab
StepHypRef Expression
1 nfopab1 4483 . . 3  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab2 4484 . . 3  |-  F/_ y { <. x ,  y
>.  |  ph }
31, 2dfdmf 5039 . 2  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y  x { <. x ,  y
>.  |  ph } y }
4 df-br 4418 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
5 opabid 4719 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
64, 5bitri 252 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
76exbii 1712 . . 3  |-  ( E. y  x { <. x ,  y >.  |  ph } y  <->  E. y ph )
87abbii 2554 . 2  |-  { x  |  E. y  x { <. x ,  y >.  |  ph } y }  =  { x  |  E. y ph }
93, 8eqtri 2449 1  |-  dom  { <. x ,  y >.  |  ph }  =  {
x  |  E. y ph }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437   E.wex 1659    e. wcel 1867   {cab 2405   <.cop 3999   class class class wbr 4417   {copab 4474   dom cdm 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-rab 2782  df-v 3080  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-br 4418  df-opab 4476  df-dm 4855
This theorem is referenced by:  dmopabss  5057  dmopab3  5058  mptfnf  5708  opabiotadm  5934  fndmin  5995  dmoprab  6382  zfrep6  6766  hartogslem1  8048  rankf  8255  dfac3  8541  axdc2lem  8867  shftdm  13102  dfiso2  15621  adjeu  27403
  Copyright terms: Public domain W3C validator