Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncan2 Structured version   Unicode version

Theorem dmncan2 29018
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
dmncan.1  |-  G  =  ( 1st `  R
)
dmncan.2  |-  H  =  ( 2nd `  R
)
dmncan.3  |-  X  =  ran  G
dmncan.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
dmncan2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  C  =/=  Z )  ->  (
( A H C )  =  ( B H C )  ->  A  =  B )
)

Proof of Theorem dmncan2
StepHypRef Expression
1 dmncrng 28997 . . . 4  |-  ( R  e.  Dmn  ->  R  e. CRingOps )
2 dmncan.1 . . . . . . 7  |-  G  =  ( 1st `  R
)
3 dmncan.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
4 dmncan.3 . . . . . . 7  |-  X  =  ran  G
52, 3, 4crngocom 28942 . . . . . 6  |-  ( ( R  e. CRingOps  /\  A  e.  X  /\  C  e.  X )  ->  ( A H C )  =  ( C H A ) )
653adant3r2 1198 . . . . 5  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H C )  =  ( C H A ) )
72, 3, 4crngocom 28942 . . . . . 6  |-  ( ( R  e. CRingOps  /\  B  e.  X  /\  C  e.  X )  ->  ( B H C )  =  ( C H B ) )
873adant3r1 1197 . . . . 5  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B H C )  =  ( C H B ) )
96, 8eqeq12d 2473 . . . 4  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H C )  =  ( B H C )  <->  ( C H A )  =  ( C H B ) ) )
101, 9sylan 471 . . 3  |-  ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A H C )  =  ( B H C )  <->  ( C H A )  =  ( C H B ) ) )
1110adantr 465 . 2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  C  =/=  Z )  ->  (
( A H C )  =  ( B H C )  <->  ( C H A )  =  ( C H B ) ) )
12 3anrot 970 . . . 4  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  <->  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)
1312biimpri 206 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( C  e.  X  /\  A  e.  X  /\  B  e.  X
) )
14 dmncan.4 . . . 4  |-  Z  =  (GId `  G )
152, 3, 4, 14dmncan1 29017 . . 3  |-  ( ( ( R  e.  Dmn  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X
) )  /\  C  =/=  Z )  ->  (
( C H A )  =  ( C H B )  ->  A  =  B )
)
1613, 15sylanl2 651 . 2  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  C  =/=  Z )  ->  (
( C H A )  =  ( C H B )  ->  A  =  B )
)
1711, 16sylbid 215 1  |-  ( ( ( R  e.  Dmn  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  C  =/=  Z )  ->  (
( A H C )  =  ( B H C )  ->  A  =  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   ran crn 4942   ` cfv 5519  (class class class)co 6193   1stc1st 6678   2ndc2nd 6679  GIdcgi 23819  CRingOpsccring 28936   Dmncdmn 28988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-1o 7023  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-grpo 23823  df-gid 23824  df-ginv 23825  df-gdiv 23826  df-ablo 23914  df-ass 23945  df-exid 23947  df-mgm 23951  df-sgr 23963  df-mndo 23970  df-rngo 24008  df-com2 24043  df-crngo 28937  df-idl 28951  df-pridl 28952  df-prrngo 28989  df-dmn 28990  df-igen 29001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator