MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminss Structured version   Unicode version

Theorem dminss 5250
Description: An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
dminss  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )

Proof of Theorem dminss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.8a 1793 . . . . . . 7  |-  ( ( x  e.  A  /\  x R y )  ->  E. x ( x  e.  A  /\  x R y ) )
21ancoms 453 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  E. x ( x  e.  A  /\  x R y ) )
3 vex 2974 . . . . . . 7  |-  y  e. 
_V
43elima2 5174 . . . . . 6  |-  ( y  e.  ( R " A )  <->  E. x
( x  e.  A  /\  x R y ) )
52, 4sylibr 212 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y  e.  ( R
" A ) )
6 simpl 457 . . . . . 6  |-  ( ( x R y  /\  x  e.  A )  ->  x R y )
7 vex 2974 . . . . . . 7  |-  x  e. 
_V
83, 7brcnv 5021 . . . . . 6  |-  ( y `' R x  <->  x R
y )
96, 8sylibr 212 . . . . 5  |-  ( ( x R y  /\  x  e.  A )  ->  y `' R x )
105, 9jca 532 . . . 4  |-  ( ( x R y  /\  x  e.  A )  ->  ( y  e.  ( R " A )  /\  y `' R x ) )
1110eximi 1625 . . 3  |-  ( E. y ( x R y  /\  x  e.  A )  ->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
127eldm 5036 . . . . 5  |-  ( x  e.  dom  R  <->  E. y  x R y )
1312anbi1i 695 . . . 4  |-  ( ( x  e.  dom  R  /\  x  e.  A
)  <->  ( E. y  x R y  /\  x  e.  A ) )
14 elin 3538 . . . 4  |-  ( x  e.  ( dom  R  i^i  A )  <->  ( x  e.  dom  R  /\  x  e.  A ) )
15 19.41v 1920 . . . 4  |-  ( E. y ( x R y  /\  x  e.  A )  <->  ( E. y  x R y  /\  x  e.  A )
)
1613, 14, 153bitr4i 277 . . 3  |-  ( x  e.  ( dom  R  i^i  A )  <->  E. y
( x R y  /\  x  e.  A
) )
177elima2 5174 . . 3  |-  ( x  e.  ( `' R " ( R " A
) )  <->  E. y
( y  e.  ( R " A )  /\  y `' R x ) )
1811, 16, 173imtr4i 266 . 2  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  ( `' R "
( R " A
) ) )
1918ssriv 3359 1  |-  ( dom 
R  i^i  A )  C_  ( `' R "
( R " A
) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   E.wex 1586    e. wcel 1756    i^i cin 3326    C_ wss 3327   class class class wbr 4291   `'ccnv 4838   dom cdm 4839   "cima 4842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-br 4292  df-opab 4350  df-xp 4845  df-cnv 4847  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852
This theorem is referenced by:  lmhmlsp  17129  cnclsi  18875  kgencn3  19130  kqsat  19303  kqcldsat  19305  cfilucfilOLD  20143  cfilucfil  20144
  Copyright terms: Public domain W3C validator