MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmhashres Structured version   Unicode version

Theorem dmhashres 12525
Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 12-Jan-2017.)
Assertion
Ref Expression
dmhashres  |-  dom  ( #  |`  A )  =  A

Proof of Theorem dmhashres
StepHypRef Expression
1 dmres 5142 . 2  |-  dom  ( #  |`  A )  =  ( A  i^i  dom  # )
2 hashf 12523 . . . 4  |-  # : _V
--> ( NN0  u.  { +oo } )
32fdmi 5749 . . 3  |-  dom  #  =  _V
43ineq2i 3662 . 2  |-  ( A  i^i  dom  # )  =  ( A  i^i  _V )
5 inv1 3790 . 2  |-  ( A  i^i  _V )  =  A
61, 4, 53eqtri 2456 1  |-  dom  ( #  |`  A )  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1438   _Vcvv 3082    u. cun 3435    i^i cin 3436   {csn 3997   dom cdm 4851    |` cres 4853   +oocpnf 9674   NN0cn0 10871   #chash 12516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-n0 10872  df-z 10940  df-uz 11162  df-hash 12517
This theorem is referenced by:  ackbijnn  13879  cntnevol  29052
  Copyright terms: Public domain W3C validator