Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmfcoafv Unicode version

Theorem dmfcoafv 27906
Description: Domains of a function composition, analogous to dmfco 5756. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
dmfcoafv  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G''' A )  e.  dom  F ) )

Proof of Theorem dmfcoafv
StepHypRef Expression
1 dmfco 5756 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )
2 funres 5451 . . . . . . 7  |-  ( Fun 
G  ->  Fun  ( G  |`  { A } ) )
32anim2i 553 . . . . . 6  |-  ( ( A  e.  dom  G  /\  Fun  G )  -> 
( A  e.  dom  G  /\  Fun  ( G  |`  { A } ) ) )
43ancoms 440 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  G  /\  Fun  ( G  |`  { A } ) ) )
5 df-dfat 27841 . . . . . 6  |-  ( G defAt 
A  <->  ( A  e. 
dom  G  /\  Fun  ( G  |`  { A }
) ) )
6 afvfundmfveq 27869 . . . . . 6  |-  ( G defAt 
A  ->  ( G''' A )  =  ( G `
 A ) )
75, 6sylbir 205 . . . . 5  |-  ( ( A  e.  dom  G  /\  Fun  ( G  |`  { A } ) )  ->  ( G''' A )  =  ( G `  A ) )
84, 7syl 16 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( G''' A )  =  ( G `  A ) )
98eqcomd 2409 . . 3  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( G `  A
)  =  ( G''' A ) )
109eleq1d 2470 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  e.  dom  F  <-> 
( G''' A )  e.  dom  F ) )
111, 10bitrd 245 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G''' A )  e.  dom  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {csn 3774   dom cdm 4837    |` cres 4839    o. ccom 4841   Fun wfun 5407   ` cfv 5413   defAt wdfat 27838  '''cafv 27839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-res 4849  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-dfat 27841  df-afv 27842
  Copyright terms: Public domain W3C validator