MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfco Structured version   Unicode version

Theorem dmfco 5875
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )

Proof of Theorem dmfco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5145 . . . 4  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y <. A , 
y >.  e.  ( F  o.  G ) ) )
2 vex 3081 . . . . . 6  |-  y  e. 
_V
3 opelco2g 5116 . . . . . 6  |-  ( ( A  e.  dom  G  /\  y  e.  _V )  ->  ( <. A , 
y >.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
42, 3mpan2 671 . . . . 5  |-  ( A  e.  dom  G  -> 
( <. A ,  y
>.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
54exbidv 1681 . . . 4  |-  ( A  e.  dom  G  -> 
( E. y <. A ,  y >.  e.  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
61, 5bitrd 253 . . 3  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
76adantl 466 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
8 fvex 5810 . . . 4  |-  ( G `
 A )  e. 
_V
98eldm2 5147 . . 3  |-  ( ( G `  A )  e.  dom  F  <->  E. y <. ( G `  A
) ,  y >.  e.  F )
10 opeq1 4168 . . . . . . 7  |-  ( x  =  ( G `  A )  ->  <. x ,  y >.  =  <. ( G `  A ) ,  y >. )
1110eleq1d 2523 . . . . . 6  |-  ( x  =  ( G `  A )  ->  ( <. x ,  y >.  e.  F  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
128, 11ceqsexv 3115 . . . . 5  |-  ( E. x ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  <. ( G `  A ) ,  y
>.  e.  F )
13 eqcom 2463 . . . . . . . 8  |-  ( x  =  ( G `  A )  <->  ( G `  A )  =  x )
14 funopfvb 5845 . . . . . . . 8  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  =  x  <->  <. A ,  x >.  e.  G ) )
1513, 14syl5bb 257 . . . . . . 7  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( x  =  ( G `  A )  <->  <. A ,  x >.  e.  G ) )
1615anbi1d 704 . . . . . 6  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  ( <. A ,  x >.  e.  G  /\  <.
x ,  y >.  e.  F ) ) )
1716exbidv 1681 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1812, 17syl5bbr 259 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( <. ( G `  A ) ,  y
>.  e.  F  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1918exbidv 1681 . . 3  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. y <.
( G `  A
) ,  y >.  e.  F  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
209, 19syl5bb 257 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  e.  dom  F  <->  E. y E. x (
<. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
217, 20bitr4d 256 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   _Vcvv 3078   <.cop 3992   dom cdm 4949    o. ccom 4953   Fun wfun 5521   ` cfv 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-iota 5490  df-fun 5529  df-fn 5530  df-fv 5535
This theorem is referenced by:  funressnfv  30183  dmfcoafv  30230  afvco2  30231
  Copyright terms: Public domain W3C validator