MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmfco Structured version   Unicode version

Theorem dmfco 5947
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )

Proof of Theorem dmfco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5209 . . . 4  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y <. A , 
y >.  e.  ( F  o.  G ) ) )
2 vex 3112 . . . . . 6  |-  y  e. 
_V
3 opelco2g 5180 . . . . . 6  |-  ( ( A  e.  dom  G  /\  y  e.  _V )  ->  ( <. A , 
y >.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
42, 3mpan2 671 . . . . 5  |-  ( A  e.  dom  G  -> 
( <. A ,  y
>.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
54exbidv 1715 . . . 4  |-  ( A  e.  dom  G  -> 
( E. y <. A ,  y >.  e.  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
61, 5bitrd 253 . . 3  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
76adantl 466 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
8 fvex 5882 . . . 4  |-  ( G `
 A )  e. 
_V
98eldm2 5211 . . 3  |-  ( ( G `  A )  e.  dom  F  <->  E. y <. ( G `  A
) ,  y >.  e.  F )
10 opeq1 4219 . . . . . . 7  |-  ( x  =  ( G `  A )  ->  <. x ,  y >.  =  <. ( G `  A ) ,  y >. )
1110eleq1d 2526 . . . . . 6  |-  ( x  =  ( G `  A )  ->  ( <. x ,  y >.  e.  F  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
128, 11ceqsexv 3146 . . . . 5  |-  ( E. x ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  <. ( G `  A ) ,  y
>.  e.  F )
13 eqcom 2466 . . . . . . . 8  |-  ( x  =  ( G `  A )  <->  ( G `  A )  =  x )
14 funopfvb 5916 . . . . . . . 8  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  =  x  <->  <. A ,  x >.  e.  G ) )
1513, 14syl5bb 257 . . . . . . 7  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( x  =  ( G `  A )  <->  <. A ,  x >.  e.  G ) )
1615anbi1d 704 . . . . . 6  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  ( <. A ,  x >.  e.  G  /\  <.
x ,  y >.  e.  F ) ) )
1716exbidv 1715 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1812, 17syl5bbr 259 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( <. ( G `  A ) ,  y
>.  e.  F  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1918exbidv 1715 . . 3  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. y <.
( G `  A
) ,  y >.  e.  F  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
209, 19syl5bb 257 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  e.  dom  F  <->  E. y E. x (
<. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
217, 20bitr4d 256 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819   _Vcvv 3109   <.cop 4038   dom cdm 5008    o. ccom 5012   Fun wfun 5588   ` cfv 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602
This theorem is referenced by:  funressnfv  32374  dmfcoafv  32421  afvco2  32422
  Copyright terms: Public domain W3C validator