MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Unicode version

Theorem dmdprdsplit2lem 16896
Description: Lemma for dmdprdsplit 16898. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dmdprdsplit.z  |-  Z  =  (Cntz `  G )
dmdprdsplit.0  |-  .0.  =  ( 0g `  G )
dmdprdsplit2.1  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
dmdprdsplit2.2  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
dmdprdsplit2.3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
dmdprdsplit2.4  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
dmdprdsplit2lem.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dmdprdsplit2lem  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )

Proof of Theorem dmdprdsplit2lem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6  |-  ( ph  ->  I  =  ( C  u.  D ) )
21adantr 465 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  I  =  ( C  u.  D ) )
32eleq2d 2537 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  Y  e.  ( C  u.  D
) ) )
4 elun 3645 . . . 4  |-  ( Y  e.  ( C  u.  D )  <->  ( Y  e.  C  \/  Y  e.  D ) )
53, 4syl6bb 261 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  ( Y  e.  C  \/  Y  e.  D ) ) )
6 dmdprdsplit2.1 . . . . . . . 8  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
76ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
8 dprdsplit.2 . . . . . . . . . 10  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
9 ssun1 3667 . . . . . . . . . . 11  |-  C  C_  ( C  u.  D
)
109, 1syl5sseqr 3553 . . . . . . . . . 10  |-  ( ph  ->  C  C_  I )
11 fssres 5751 . . . . . . . . . 10  |-  ( ( S : I --> (SubGrp `  G )  /\  C  C_  I )  ->  ( S  |`  C ) : C --> (SubGrp `  G )
)
128, 10, 11syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
13 fdm 5735 . . . . . . . . 9  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
1412, 13syl 16 . . . . . . . 8  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
1514ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
16 simplr 754 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  e.  C
)
17 simprl 755 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  Y  e.  C
)
18 simprr 756 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  =/=  Y
)
19 dmdprdsplit.z . . . . . . 7  |-  Z  =  (Cntz `  G )
207, 15, 16, 17, 18, 19dprdcntz 16844 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( Z `  ( ( S  |`  C ) `  Y
) ) )
21 fvres 5880 . . . . . . 7  |-  ( X  e.  C  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
2221ad2antlr 726 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
23 fvres 5880 . . . . . . . 8  |-  ( Y  e.  C  ->  (
( S  |`  C ) `
 Y )  =  ( S `  Y
) )
2423ad2antrl 727 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  Y
)  =  ( S `
 Y ) )
2524fveq2d 5870 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( Z `  ( ( S  |`  C ) `  Y
) )  =  ( Z `  ( S `
 Y ) ) )
2620, 22, 253sstr3d 3546 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
2726exp32 605 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  C  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
2821ad2antlr 726 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
296ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
3014ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
31 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  X  e.  C
)
3229, 30, 31dprdub 16874 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( G DProd  ( S  |`  C )
) )
3328, 32eqsstr3d 3539 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
34 dmdprdsplit2.3 . . . . . . . 8  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
3534ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
36 eqid 2467 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
3736dprdssv 16858 . . . . . . . 8  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
38 fvres 5880 . . . . . . . . . 10  |-  ( Y  e.  D  ->  (
( S  |`  D ) `
 Y )  =  ( S `  Y
) )
3938ad2antrl 727 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  =  ( S `
 Y ) )
40 dmdprdsplit2.2 . . . . . . . . . . 11  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
4140ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  D ) )
42 ssun2 3668 . . . . . . . . . . . . . 14  |-  D  C_  ( C  u.  D
)
4342, 1syl5sseqr 3553 . . . . . . . . . . . . 13  |-  ( ph  ->  D  C_  I )
44 fssres 5751 . . . . . . . . . . . . 13  |-  ( ( S : I --> (SubGrp `  G )  /\  D  C_  I )  ->  ( S  |`  D ) : D --> (SubGrp `  G )
)
458, 43, 44syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
46 fdm 5735 . . . . . . . . . . . 12  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
4745, 46syl 16 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
4847ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  D )  =  D )
49 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  Y  e.  D
)
5041, 48, 49dprdub 16874 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  C_  ( G DProd  ( S  |`  D )
) )
5139, 50eqsstr3d 3539 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  Y )  C_  ( G DProd  ( S  |`  D ) ) )
5236, 19cntz2ss 16175 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )  /\  ( S `  Y
)  C_  ( G DProd  ( S  |`  D )
) )  ->  ( Z `  ( G DProd  ( S  |`  D )
) )  C_  ( Z `  ( S `  Y ) ) )
5337, 51, 52sylancr 663 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( Z `  ( G DProd  ( S  |`  D ) ) ) 
C_  ( Z `  ( S `  Y ) ) )
5435, 53sstrd 3514 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( S `  Y ) ) )
5533, 54sstrd 3514 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
5655exp32 605 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  D  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
5727, 56jaod 380 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  C  \/  Y  e.  D
)  ->  ( X  =/=  Y  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) ) ) )
585, 57sylbid 215 . 2  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
59 dprdgrp 16841 . . . . . . . 8  |-  ( G dom DProd  ( S  |`  C )  ->  G  e.  Grp )
606, 59syl 16 . . . . . . 7  |-  ( ph  ->  G  e.  Grp )
6160adantr 465 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  G  e.  Grp )
6236subgacs 16041 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
63 acsmre 14907 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
6461, 62, 633syl 20 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
65 difundir 3751 . . . . . . . . . . 11  |-  ( ( C  u.  D ) 
\  { X }
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) )
662difeq1d 3621 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  u.  D
)  \  { X } ) )
67 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  C )
6867snssd 4172 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  { X }  C_  C )
69 sslin 3724 . . . . . . . . . . . . . . 15  |-  ( { X }  C_  C  ->  ( D  i^i  { X } )  C_  ( D  i^i  C ) )
7068, 69syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  C_  ( D  i^i  C ) )
71 incom 3691 . . . . . . . . . . . . . . 15  |-  ( C  i^i  D )  =  ( D  i^i  C
)
72 dprdsplit.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
7372adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  ( C  i^i  D )  =  (/) )
7471, 73syl5eqr 2522 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  C )  =  (/) )
75 sseq0 3817 . . . . . . . . . . . . . 14  |-  ( ( ( D  i^i  { X } )  C_  ( D  i^i  C )  /\  ( D  i^i  C )  =  (/) )  ->  ( D  i^i  { X }
)  =  (/) )
7670, 74, 75syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  =  (/) )
77 disj3 3871 . . . . . . . . . . . . 13  |-  ( ( D  i^i  { X } )  =  (/)  <->  D  =  ( D  \  { X } ) )
7876, 77sylib 196 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  D  =  ( D  \  { X } ) )
7978uneq2d 3658 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
( C  \  { X } )  u.  D
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) ) )
8065, 66, 793eqtr4a 2534 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  \  { X } )  u.  D
) )
8180imaeq2d 5337 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( S "
( ( C  \  { X } )  u.  D ) ) )
82 imaundi 5418 . . . . . . . . 9  |-  ( S
" ( ( C 
\  { X }
)  u.  D ) )  =  ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) )
8381, 82syl6eq 2524 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( ( S
" ( C  \  { X } ) )  u.  ( S " D ) ) )
8483unieqd 4255 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  U. ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) ) )
85 uniun 4264 . . . . . . 7  |-  U. (
( S " ( C  \  { X }
) )  u.  ( S " D ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) )
8684, 85syl6eq 2524 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) )
87 dmdprdsplit2lem.k . . . . . . . . 9  |-  K  =  (mrCls `  (SubGrp `  G
) )
88 difss 3631 . . . . . . . . . . 11  |-  ( C 
\  { X }
)  C_  C
89 imass2 5372 . . . . . . . . . . 11  |-  ( ( C  \  { X } )  C_  C  ->  ( S " ( C  \  { X }
) )  C_  ( S " C ) )
90 uniss 4266 . . . . . . . . . . 11  |-  ( ( S " ( C 
\  { X }
) )  C_  ( S " C )  ->  U. ( S " ( C  \  { X }
) )  C_  U. ( S " C ) )
9188, 89, 90mp2b 10 . . . . . . . . . 10  |-  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C )
92 imassrn 5348 . . . . . . . . . . . 12  |-  ( S
" C )  C_  ran  S
93 frn 5737 . . . . . . . . . . . . . . 15  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
948, 93syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
9594adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  (SubGrp `  G )
)
96 mresspw 14847 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9764, 96syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9895, 97sstrd 3514 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  ~P ( Base `  G
) )
9992, 98syl5ss 3515 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " C )  C_  ~P ( Base `  G
) )
100 sspwuni 4411 . . . . . . . . . . 11  |-  ( ( S " C ) 
C_  ~P ( Base `  G
)  <->  U. ( S " C )  C_  ( Base `  G ) )
10199, 100sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " C )  C_  ( Base `  G )
)
10291, 101syl5ss 3515 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Base `  G
) )
10364, 87, 102mrcssidd 14880 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( K `  U. ( S " ( C  \  { X }
) ) ) )
104 imassrn 5348 . . . . . . . . . . . 12  |-  ( S
" D )  C_  ran  S
105104, 98syl5ss 3515 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " D )  C_  ~P ( Base `  G
) )
106 sspwuni 4411 . . . . . . . . . . 11  |-  ( ( S " D ) 
C_  ~P ( Base `  G
)  <->  U. ( S " D )  C_  ( Base `  G ) )
107105, 106sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( Base `  G )
)
10864, 87, 107mrcssidd 14880 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( K `  U. ( S " D ) ) )
10987dprdspan 16876 . . . . . . . . . . . 12  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ran  ( S  |`  D ) ) )
11040, 109syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ran  ( S  |`  D ) ) )
111 df-ima 5012 . . . . . . . . . . . . 13  |-  ( S
" D )  =  ran  ( S  |`  D )
112111unieqi 4254 . . . . . . . . . . . 12  |-  U. ( S " D )  = 
U. ran  ( S  |`  D )
113112fveq2i 5869 . . . . . . . . . . 11  |-  ( K `
 U. ( S
" D ) )  =  ( K `  U. ran  ( S  |`  D ) )
114110, 113syl6eqr 2526 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ( S " D ) ) )
115114adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ( S
" D ) ) )
116108, 115sseqtr4d 3541 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )
117 unss12 3676 . . . . . . . 8  |-  ( ( U. ( S "
( C  \  { X } ) )  C_  ( K `  U. ( S " ( C  \  { X } ) ) )  /\  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )  ->  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
118103, 116, 117syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
11987mrccl 14866 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Base `  G ) )  ->  ( K `  U. ( S " ( C  \  { X }
) ) )  e.  (SubGrp `  G )
)
12064, 102, 119syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )
121 dprdsubg 16873 . . . . . . . . . 10  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
12240, 121syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
123122adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
124 eqid 2467 . . . . . . . . 9  |-  ( LSSum `  G )  =  (
LSSum `  G )
125124lsmunss 16484 . . . . . . . 8  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) )  C_  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
126120, 123, 125syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) )  u.  ( G DProd  ( S  |`  D ) ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
127118, 126sstrd 3514 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12886, 127eqsstrd 3538 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12991a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C ) )
13064, 87, 129, 101mrcssd 14879 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( K `  U. ( S " C ) ) )
13187dprdspan 16876 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ran  ( S  |`  C ) ) )
1326, 131syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ran  ( S  |`  C ) ) )
133 df-ima 5012 . . . . . . . . . . . 12  |-  ( S
" C )  =  ran  ( S  |`  C )
134133unieqi 4254 . . . . . . . . . . 11  |-  U. ( S " C )  = 
U. ran  ( S  |`  C )
135134fveq2i 5869 . . . . . . . . . 10  |-  ( K `
 U. ( S
" C ) )  =  ( K `  U. ran  ( S  |`  C ) )
136132, 135syl6eqr 2526 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ( S " C ) ) )
137136adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ( S
" C ) ) )
138130, 137sseqtr4d 3541 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )
13934adantr 465 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
140138, 139sstrd 3514 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
141124, 19lsmsubg 16480 . . . . . 6  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( K `  U. ( S " ( C 
\  { X }
) ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )  -> 
( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
142120, 123, 140, 141syl3anc 1228 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
14387mrcsscl 14875 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { X } ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  /\  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )  -> 
( K `  U. ( S " ( I 
\  { X }
) ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
14464, 128, 142, 143syl3anc 1228 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
145 sslin 3724 . . . 4  |-  ( ( K `  U. ( S " ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  ->  ( ( S `  X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  ( ( S `
 X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
146144, 145syl 16 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  ( ( S `  X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
14710sselda 3504 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  I )
1488ffvelrnda 6021 . . . . 5  |-  ( (
ph  /\  X  e.  I )  ->  ( S `  X )  e.  (SubGrp `  G )
)
149147, 148syldan 470 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  e.  (SubGrp `  G )
)
150 dmdprdsplit.0 . . . 4  |-  .0.  =  ( 0g `  G )
15121adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
1526adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  G dom DProd  ( S  |`  C ) )
15314adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  dom  ( S  |`  C )  =  C )
154152, 153, 67dprdub 16874 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  C_  ( G DProd  ( S  |`  C ) ) )
155151, 154eqsstr3d 3539 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
156 dprdsubg 16873 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
1576, 156syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
158157adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
159124lsmlub 16489 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )  -> 
( ( ( S `
 X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `  U. ( S " ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
160149, 120, 158, 159syl3anc 1228 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `
 U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
161155, 138, 160mpbi2and 919 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) )
162 ssrin 3723 . . . . . . 7  |-  ( ( ( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) )  ->  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) ) )
163161, 162syl 16 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
164 dmdprdsplit2.4 . . . . . . 7  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
165164adantr 465 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  }
)
166163, 165sseqtrd 3540 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  {  .0.  } )
167124lsmub1 16482 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )  -> 
( S `  X
)  C_  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
168149, 120, 167syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
169150subg0cl 16014 . . . . . . . . 9  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  X ) )
170149, 169syl 16 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( S `  X
) )
171168, 170sseldd 3505 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
172150subg0cl 16014 . . . . . . . 8  |-  ( ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( G DProd 
( S  |`  D ) ) )
173123, 172syl 16 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( G DProd  ( S  |`  D ) ) )
174171, 173elind 3688 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( ( S `
 X ) (
LSSum `  G ) ( K `  U. ( S " ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
175174snssd 4172 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  {  .0.  } 
C_  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
176166, 175eqssd 3521 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
177 resima2 5307 . . . . . . . . 9  |-  ( ( C  \  { X } )  C_  C  ->  ( ( S  |`  C ) " ( C  \  { X }
) )  =  ( S " ( C 
\  { X }
) ) )
17888, 177mp1i 12 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C )
" ( C  \  { X } ) )  =  ( S "
( C  \  { X } ) ) )
179178unieqd 4255 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. (
( S  |`  C )
" ( C  \  { X } ) )  =  U. ( S
" ( C  \  { X } ) ) )
180179fveq2d 5870 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( ( S  |`  C ) " ( C  \  { X } ) ) )  =  ( K `
 U. ( S
" ( C  \  { X } ) ) ) )
181151, 180ineq12d 3701 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  ( ( S `
 X )  i^i  ( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
182152, 153, 67, 150, 87dprddisj 16845 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  {  .0.  }
)
183181, 182eqtr3d 2510 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( C  \  { X } ) ) ) )  =  {  .0.  } )
1848adantr 465 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  S : I --> (SubGrp `  G ) )
185 ffun 5733 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  Fun  S )
186 funiunfv 6148 . . . . . . . 8  |-  ( Fun 
S  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
187184, 185, 1863syl 20 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
1886ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  G dom DProd  ( S  |`  C ) )
18914ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  dom  ( S  |`  C )  =  C )
190 eldifi 3626 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  e.  C )
191190adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  e.  C )
192 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  X  e.  C )
193 eldifsni 4153 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  =/=  X )
194193adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  =/=  X )
195188, 189, 191, 192, 194, 19dprdcntz 16844 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  C_  ( Z `  ( ( S  |`  C ) `  X
) ) )
196 fvres 5880 . . . . . . . . . . 11  |-  ( y  e.  C  ->  (
( S  |`  C ) `
 y )  =  ( S `  y
) )
197191, 196syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  =  ( S `
 y ) )
19821ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
199198fveq2d 5870 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( Z `  (
( S  |`  C ) `
 X ) )  =  ( Z `  ( S `  X ) ) )
200195, 197, 1993sstr3d 3546 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( S `  y
)  C_  ( Z `  ( S `  X
) ) )
201200ralrimiva 2878 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
202 iunss 4366 . . . . . . . 8  |-  ( U_ y  e.  ( C  \  { X } ) ( S `  y
)  C_  ( Z `  ( S `  X
) )  <->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
203201, 202sylibr 212 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
204187, 203eqsstr3d 3539 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Z `  ( S `  X ) ) )
20536subgss 16007 . . . . . . . 8  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  ( S `  X )  C_  ( Base `  G ) )
206149, 205syl 16 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Base `  G
) )
20736, 19cntzsubg 16179 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( S `  X ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20861, 206, 207syl2anc 661 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20987mrcsscl 14875 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Z `  ( S `  X ) )  /\  ( Z `  ( S `
 X ) )  e.  (SubGrp `  G
) )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
21064, 204, 208, 209syl3anc 1228 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
21119, 120, 149, 210cntzrecd 16502 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Z `  ( K `  U. ( S
" ( C  \  { X } ) ) ) ) )
212124, 149, 120, 123, 150, 176, 183, 19, 211lsmdisj3 16507 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )  =  {  .0.  } )
213146, 212sseqtrd 3540 . 2  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  {  .0.  } )
21458, 213jca 532 1  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   U_ciun 4325   class class class wbr 4447   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   Basecbs 14490   0gc0g 14695  Moorecmre 14837  mrClscmrc 14838  ACScacs 14840   Grpcgrp 15727  SubGrpcsubg 16000  Cntzccntz 16158   LSSumclsm 16460   DProd cdprd 16827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-0g 14697  df-gsum 14698  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-mhm 15786  df-submnd 15787  df-grp 15867  df-minusg 15868  df-sbg 15869  df-mulg 15870  df-subg 16003  df-ghm 16070  df-gim 16112  df-cntz 16160  df-oppg 16186  df-lsm 16462  df-cmn 16606  df-dprd 16829
This theorem is referenced by:  dmdprdsplit2  16897
  Copyright terms: Public domain W3C validator