MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2lem Structured version   Unicode version

Theorem dmdprdsplit2lem 17671
Description: Lemma for dmdprdsplit 17673. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dprdsplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
dprdsplit.u  |-  ( ph  ->  I  =  ( C  u.  D ) )
dmdprdsplit.z  |-  Z  =  (Cntz `  G )
dmdprdsplit.0  |-  .0.  =  ( 0g `  G )
dmdprdsplit2.1  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
dmdprdsplit2.2  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
dmdprdsplit2.3  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
dmdprdsplit2.4  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
dmdprdsplit2lem.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dmdprdsplit2lem  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )

Proof of Theorem dmdprdsplit2lem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dprdsplit.u . . . . . 6  |-  ( ph  ->  I  =  ( C  u.  D ) )
21adantr 467 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  I  =  ( C  u.  D ) )
32eleq2d 2493 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  Y  e.  ( C  u.  D
) ) )
4 elun 3607 . . . 4  |-  ( Y  e.  ( C  u.  D )  <->  ( Y  e.  C  \/  Y  e.  D ) )
53, 4syl6bb 265 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  <->  ( Y  e.  C  \/  Y  e.  D ) ) )
6 dmdprdsplit2.1 . . . . . . . 8  |-  ( ph  ->  G dom DProd  ( S  |`  C ) )
76ad2antrr 731 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
8 dprdsplit.2 . . . . . . . . . 10  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
9 ssun1 3630 . . . . . . . . . . 11  |-  C  C_  ( C  u.  D
)
109, 1syl5sseqr 3514 . . . . . . . . . 10  |-  ( ph  ->  C  C_  I )
118, 10fssresd 5765 . . . . . . . . 9  |-  ( ph  ->  ( S  |`  C ) : C --> (SubGrp `  G ) )
12 fdm 5748 . . . . . . . . 9  |-  ( ( S  |`  C ) : C --> (SubGrp `  G )  ->  dom  ( S  |`  C )  =  C )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  dom  ( S  |`  C )  =  C )
1413ad2antrr 731 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
15 simplr 761 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  e.  C
)
16 simprl 763 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  Y  e.  C
)
17 simprr 765 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  X  =/=  Y
)
18 dmdprdsplit.z . . . . . . 7  |-  Z  =  (Cntz `  G )
197, 14, 15, 16, 17, 18dprdcntz 17633 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( Z `  ( ( S  |`  C ) `  Y
) ) )
20 fvres 5893 . . . . . . 7  |-  ( X  e.  C  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
2120ad2antlr 732 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
22 fvres 5893 . . . . . . . 8  |-  ( Y  e.  C  ->  (
( S  |`  C ) `
 Y )  =  ( S `  Y
) )
2322ad2antrl 733 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  Y
)  =  ( S `
 Y ) )
2423fveq2d 5883 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( Z `  ( ( S  |`  C ) `  Y
) )  =  ( Z `  ( S `
 Y ) ) )
2519, 21, 243sstr3d 3507 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  C  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
2625exp32 609 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  C  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
2720ad2antlr 732 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
286ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  C ) )
2913ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  C )  =  C )
30 simplr 761 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  X  e.  C
)
3128, 29, 30dprdub 17651 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  C ) `  X
)  C_  ( G DProd  ( S  |`  C )
) )
3227, 31eqsstr3d 3500 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
33 dmdprdsplit2.3 . . . . . . . 8  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )
3433ad2antrr 731 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
35 eqid 2423 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
3635dprdssv 17642 . . . . . . . 8  |-  ( G DProd 
( S  |`  D ) )  C_  ( Base `  G )
37 fvres 5893 . . . . . . . . . 10  |-  ( Y  e.  D  ->  (
( S  |`  D ) `
 Y )  =  ( S `  Y
) )
3837ad2antrl 733 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  =  ( S `
 Y ) )
39 dmdprdsplit2.2 . . . . . . . . . . 11  |-  ( ph  ->  G dom DProd  ( S  |`  D ) )
4039ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  G dom DProd  ( S  |`  D ) )
41 ssun2 3631 . . . . . . . . . . . . . 14  |-  D  C_  ( C  u.  D
)
4241, 1syl5sseqr 3514 . . . . . . . . . . . . 13  |-  ( ph  ->  D  C_  I )
438, 42fssresd 5765 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  |`  D ) : D --> (SubGrp `  G ) )
44 fdm 5748 . . . . . . . . . . . 12  |-  ( ( S  |`  D ) : D --> (SubGrp `  G )  ->  dom  ( S  |`  D )  =  D )
4543, 44syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( S  |`  D )  =  D )
4645ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  dom  ( S  |`  D )  =  D )
47 simprl 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  Y  e.  D
)
4840, 46, 47dprdub 17651 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( ( S  |`  D ) `  Y
)  C_  ( G DProd  ( S  |`  D )
) )
4938, 48eqsstr3d 3500 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  Y )  C_  ( G DProd  ( S  |`  D ) ) )
5035, 18cntz2ss 16979 . . . . . . . 8  |-  ( ( ( G DProd  ( S  |`  D ) )  C_  ( Base `  G )  /\  ( S `  Y
)  C_  ( G DProd  ( S  |`  D )
) )  ->  ( Z `  ( G DProd  ( S  |`  D )
) )  C_  ( Z `  ( S `  Y ) ) )
5136, 49, 50sylancr 668 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( Z `  ( G DProd  ( S  |`  D ) ) ) 
C_  ( Z `  ( S `  Y ) ) )
5234, 51sstrd 3475 . . . . . 6  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( G DProd  ( S  |`  C ) ) 
C_  ( Z `  ( S `  Y ) ) )
5332, 52sstrd 3475 . . . . 5  |-  ( ( ( ph  /\  X  e.  C )  /\  ( Y  e.  D  /\  X  =/=  Y ) )  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) )
5453exp32 609 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  D  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
5526, 54jaod 382 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  C  \/  Y  e.  D
)  ->  ( X  =/=  Y  ->  ( S `  X )  C_  ( Z `  ( S `  Y ) ) ) ) )
565, 55sylbid 219 . 2  |-  ( (
ph  /\  X  e.  C )  ->  ( Y  e.  I  ->  ( X  =/=  Y  -> 
( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) ) )
57 dprdgrp 17630 . . . . . . . 8  |-  ( G dom DProd  ( S  |`  C )  ->  G  e.  Grp )
586, 57syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  Grp )
5958adantr 467 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  G  e.  Grp )
6035subgacs 16845 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
61 acsmre 15551 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
6259, 60, 613syl 18 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
63 difundir 3727 . . . . . . . . . . 11  |-  ( ( C  u.  D ) 
\  { X }
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) )
642difeq1d 3583 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  u.  D
)  \  { X } ) )
65 simpr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  C )
6665snssd 4143 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  { X }  C_  C )
67 sslin 3689 . . . . . . . . . . . . . . 15  |-  ( { X }  C_  C  ->  ( D  i^i  { X } )  C_  ( D  i^i  C ) )
6866, 67syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  C_  ( D  i^i  C ) )
69 incom 3656 . . . . . . . . . . . . . . 15  |-  ( C  i^i  D )  =  ( D  i^i  C
)
70 dprdsplit.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
7170adantr 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  X  e.  C )  ->  ( C  i^i  D )  =  (/) )
7269, 71syl5eqr 2478 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  C )  =  (/) )
73 sseq0 3795 . . . . . . . . . . . . . 14  |-  ( ( ( D  i^i  { X } )  C_  ( D  i^i  C )  /\  ( D  i^i  C )  =  (/) )  ->  ( D  i^i  { X }
)  =  (/) )
7468, 72, 73syl2anc 666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ( D  i^i  { X }
)  =  (/) )
75 disj3 3838 . . . . . . . . . . . . 13  |-  ( ( D  i^i  { X } )  =  (/)  <->  D  =  ( D  \  { X } ) )
7674, 75sylib 200 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  D  =  ( D  \  { X } ) )
7776uneq2d 3621 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  (
( C  \  { X } )  u.  D
)  =  ( ( C  \  { X } )  u.  ( D  \  { X }
) ) )
7863, 64, 773eqtr4a 2490 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  (
I  \  { X } )  =  ( ( C  \  { X } )  u.  D
) )
7978imaeq2d 5185 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( S "
( ( C  \  { X } )  u.  D ) ) )
80 imaundi 5265 . . . . . . . . 9  |-  ( S
" ( ( C 
\  { X }
)  u.  D ) )  =  ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) )
8179, 80syl6eq 2480 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S " ( I  \  { X } ) )  =  ( ( S
" ( C  \  { X } ) )  u.  ( S " D ) ) )
8281unieqd 4227 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  U. ( ( S " ( C 
\  { X }
) )  u.  ( S " D ) ) )
83 uniun 4236 . . . . . . 7  |-  U. (
( S " ( C  \  { X }
) )  u.  ( S " D ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) )
8482, 83syl6eq 2480 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) )  =  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) )
85 dmdprdsplit2lem.k . . . . . . . . 9  |-  K  =  (mrCls `  (SubGrp `  G
) )
86 difss 3593 . . . . . . . . . . 11  |-  ( C 
\  { X }
)  C_  C
87 imass2 5221 . . . . . . . . . . 11  |-  ( ( C  \  { X } )  C_  C  ->  ( S " ( C  \  { X }
) )  C_  ( S " C ) )
88 uniss 4238 . . . . . . . . . . 11  |-  ( ( S " ( C 
\  { X }
) )  C_  ( S " C )  ->  U. ( S " ( C  \  { X }
) )  C_  U. ( S " C ) )
8986, 87, 88mp2b 10 . . . . . . . . . 10  |-  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C )
90 imassrn 5196 . . . . . . . . . . . 12  |-  ( S
" C )  C_  ran  S
91 frn 5750 . . . . . . . . . . . . . . 15  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
928, 91syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
9392adantr 467 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  (SubGrp `  G )
)
94 mresspw 15491 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9562, 94syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  X  e.  C )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
9693, 95sstrd 3475 . . . . . . . . . . . 12  |-  ( (
ph  /\  X  e.  C )  ->  ran  S 
C_  ~P ( Base `  G
) )
9790, 96syl5ss 3476 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " C )  C_  ~P ( Base `  G
) )
98 sspwuni 4386 . . . . . . . . . . 11  |-  ( ( S " C ) 
C_  ~P ( Base `  G
)  <->  U. ( S " C )  C_  ( Base `  G ) )
9997, 98sylib 200 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " C )  C_  ( Base `  G )
)
10089, 99syl5ss 3476 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Base `  G
) )
10162, 85, 100mrcssidd 15524 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( K `  U. ( S " ( C  \  { X }
) ) ) )
102 imassrn 5196 . . . . . . . . . . . 12  |-  ( S
" D )  C_  ran  S
103102, 96syl5ss 3476 . . . . . . . . . . 11  |-  ( (
ph  /\  X  e.  C )  ->  ( S " D )  C_  ~P ( Base `  G
) )
104 sspwuni 4386 . . . . . . . . . . 11  |-  ( ( S " D ) 
C_  ~P ( Base `  G
)  <->  U. ( S " D )  C_  ( Base `  G ) )
105103, 104sylib 200 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( Base `  G )
)
10662, 85, 105mrcssidd 15524 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( K `  U. ( S " D ) ) )
10785dprdspan 17653 . . . . . . . . . . . 12  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ran  ( S  |`  D ) ) )
10839, 107syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ran  ( S  |`  D ) ) )
109 df-ima 4864 . . . . . . . . . . . . 13  |-  ( S
" D )  =  ran  ( S  |`  D )
110109unieqi 4226 . . . . . . . . . . . 12  |-  U. ( S " D )  = 
U. ran  ( S  |`  D )
111110fveq2i 5882 . . . . . . . . . . 11  |-  ( K `
 U. ( S
" D ) )  =  ( K `  U. ran  ( S  |`  D ) )
112108, 111syl6eqr 2482 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  =  ( K `  U. ( S " D ) ) )
113112adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  =  ( K `
 U. ( S
" D ) ) )
114106, 113sseqtr4d 3502 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )
115 unss12 3639 . . . . . . . 8  |-  ( ( U. ( S "
( C  \  { X } ) )  C_  ( K `  U. ( S " ( C  \  { X } ) ) )  /\  U. ( S " D )  C_  ( G DProd  ( S  |`  D ) ) )  ->  ( U. ( S " ( C  \  { X } ) )  u.  U. ( S
" D ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
116101, 114, 115syl2anc 666 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) ) )
11785mrccl 15510 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Base `  G ) )  ->  ( K `  U. ( S " ( C  \  { X }
) ) )  e.  (SubGrp `  G )
)
11862, 100, 117syl2anc 666 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )
119 dprdsubg 17650 . . . . . . . . . 10  |-  ( G dom DProd  ( S  |`  D )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
12039, 119syl 17 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)
121120adantr 467 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G ) )
122 eqid 2423 . . . . . . . . 9  |-  ( LSSum `  G )  =  (
LSSum `  G )
123122lsmunss 17303 . . . . . . . 8  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )
)  ->  ( ( K `  U. ( S
" ( C  \  { X } ) ) )  u.  ( G DProd 
( S  |`  D ) ) )  C_  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
124118, 121, 123syl2anc 666 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) )  u.  ( G DProd  ( S  |`  D ) ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
125116, 124sstrd 3475 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( U. ( S " ( C  \  { X }
) )  u.  U. ( S " D ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12684, 125eqsstrd 3499 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( I  \  { X } ) ) 
C_  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
12789a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  U. ( S " C ) )
12862, 85, 127, 99mrcssd 15523 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( K `  U. ( S " C ) ) )
12985dprdspan 17653 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ran  ( S  |`  C ) ) )
1306, 129syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ran  ( S  |`  C ) ) )
131 df-ima 4864 . . . . . . . . . . . 12  |-  ( S
" C )  =  ran  ( S  |`  C )
132131unieqi 4226 . . . . . . . . . . 11  |-  U. ( S " C )  = 
U. ran  ( S  |`  C )
133132fveq2i 5882 . . . . . . . . . 10  |-  ( K `
 U. ( S
" C ) )  =  ( K `  U. ran  ( S  |`  C ) )
134130, 133syl6eqr 2482 . . . . . . . . 9  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  =  ( K `  U. ( S " C ) ) )
135134adantr 467 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  =  ( K `
 U. ( S
" C ) ) )
136128, 135sseqtr4d 3502 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )
13733adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
138136, 137sstrd 3475 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( G DProd  ( S  |`  D ) ) ) )
139122, 18lsmsubg 17299 . . . . . 6  |-  ( ( ( K `  U. ( S " ( C 
\  { X }
) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  /\  ( K `  U. ( S " ( C 
\  { X }
) ) )  C_  ( Z `  ( G DProd 
( S  |`  D ) ) ) )  -> 
( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
140118, 121, 138, 139syl3anc 1265 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( K `  U. ( S " ( C 
\  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G
) )
14185mrcsscl 15519 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { X } ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) )  /\  ( ( K `
 U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  e.  (SubGrp `  G ) )  -> 
( K `  U. ( S " ( I 
\  { X }
) ) )  C_  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) )
14262, 126, 140, 141syl3anc 1265 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )
143 sslin 3689 . . . 4  |-  ( ( K `  U. ( S " ( I  \  { X } ) ) )  C_  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) )  ->  ( ( S `  X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  ( ( S `
 X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
144142, 143syl 17 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  ( ( S `  X )  i^i  ( ( K `  U. ( S " ( C  \  { X }
) ) ) (
LSSum `  G ) ( G DProd  ( S  |`  D ) ) ) ) )
14510sselda 3465 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  X  e.  I )
1468ffvelrnda 6035 . . . . 5  |-  ( (
ph  /\  X  e.  I )  ->  ( S `  X )  e.  (SubGrp `  G )
)
147145, 146syldan 473 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  e.  (SubGrp `  G )
)
148 dmdprdsplit.0 . . . 4  |-  .0.  =  ( 0g `  G )
14920adantl 468 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  =  ( S `  X
) )
1506adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  G dom DProd  ( S  |`  C ) )
15113adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  X  e.  C )  ->  dom  ( S  |`  C )  =  C )
152150, 151, 65dprdub 17651 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C ) `
 X )  C_  ( G DProd  ( S  |`  C ) ) )
153149, 152eqsstr3d 3500 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( G DProd  ( S  |`  C ) ) )
154 dprdsubg 17650 . . . . . . . . . . 11  |-  ( G dom DProd  ( S  |`  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
1556, 154syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G )
)
156155adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  X  e.  C )  ->  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )
157122lsmlub 17308 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G )  /\  ( G DProd  ( S  |`  C ) )  e.  (SubGrp `  G ) )  -> 
( ( ( S `
 X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `  U. ( S " ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
158147, 118, 156, 157syl3anc 1265 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X )  C_  ( G DProd  ( S  |`  C ) )  /\  ( K `
 U. ( S
" ( C  \  { X } ) ) )  C_  ( G DProd  ( S  |`  C )
) )  <->  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) ) )
159153, 136, 158mpbi2and 930 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) ) )
160 ssrin 3688 . . . . . . 7  |-  ( ( ( S `  X
) ( LSSum `  G
) ( K `  U. ( S " ( C  \  { X }
) ) ) ) 
C_  ( G DProd  ( S  |`  C ) )  ->  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd 
( S  |`  D ) ) ) )
161159, 160syl 17 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
162 dmdprdsplit2.4 . . . . . . 7  |-  ( ph  ->  ( ( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
163162adantr 467 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  (
( G DProd  ( S  |`  C ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  }
)
164161, 163sseqtrd 3501 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  C_  {  .0.  } )
165122lsmub1 17301 . . . . . . . . 9  |-  ( ( ( S `  X
)  e.  (SubGrp `  G )  /\  ( K `  U. ( S
" ( C  \  { X } ) ) )  e.  (SubGrp `  G ) )  -> 
( S `  X
)  C_  ( ( S `  X )
( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
166147, 118, 165syl2anc 666 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
167148subg0cl 16818 . . . . . . . . 9  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  X ) )
168147, 167syl 17 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( S `  X
) )
169166, 168sseldd 3466 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) ) )
170148subg0cl 16818 . . . . . . . 8  |-  ( ( G DProd  ( S  |`  D ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( G DProd 
( S  |`  D ) ) )
171121, 170syl 17 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( G DProd  ( S  |`  D ) ) )
172169, 171elind 3651 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  .0.  e.  ( ( ( S `
 X ) (
LSSum `  G ) ( K `  U. ( S " ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
173172snssd 4143 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  {  .0.  } 
C_  ( ( ( S `  X ) ( LSSum `  G )
( K `  U. ( S " ( C 
\  { X }
) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) ) )
174164, 173eqssd 3482 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S `  X ) ( LSSum `  G ) ( K `
 U. ( S
" ( C  \  { X } ) ) ) )  i^i  ( G DProd  ( S  |`  D ) ) )  =  {  .0.  } )
175 resima2 5155 . . . . . . . . 9  |-  ( ( C  \  { X } )  C_  C  ->  ( ( S  |`  C ) " ( C  \  { X }
) )  =  ( S " ( C 
\  { X }
) ) )
17686, 175mp1i 13 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  (
( S  |`  C )
" ( C  \  { X } ) )  =  ( S "
( C  \  { X } ) ) )
177176unieqd 4227 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U. (
( S  |`  C )
" ( C  \  { X } ) )  =  U. ( S
" ( C  \  { X } ) ) )
178177fveq2d 5883 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( ( S  |`  C ) " ( C  \  { X } ) ) )  =  ( K `
 U. ( S
" ( C  \  { X } ) ) ) )
179149, 178ineq12d 3666 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  ( ( S `
 X )  i^i  ( K `  U. ( S " ( C 
\  { X }
) ) ) ) )
180150, 151, 65, 148, 85dprddisj 17634 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  (
( ( S  |`  C ) `  X
)  i^i  ( K `  U. ( ( S  |`  C ) " ( C  \  { X }
) ) ) )  =  {  .0.  }
)
181179, 180eqtr3d 2466 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( C  \  { X } ) ) ) )  =  {  .0.  } )
1828adantr 467 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  S : I --> (SubGrp `  G ) )
183 ffun 5746 . . . . . . . 8  |-  ( S : I --> (SubGrp `  G )  ->  Fun  S )
184 funiunfv 6166 . . . . . . . 8  |-  ( Fun 
S  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
185182, 183, 1843syl 18 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  = 
U. ( S "
( C  \  { X } ) ) )
1866ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  G dom DProd  ( S  |`  C ) )
18713ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  dom  ( S  |`  C )  =  C )
188 eldifi 3588 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  e.  C )
189188adantl 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  e.  C )
190 simplr 761 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  ->  X  e.  C )
191 eldifsni 4124 . . . . . . . . . . . 12  |-  ( y  e.  ( C  \  { X } )  -> 
y  =/=  X )
192191adantl 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
y  =/=  X )
193186, 187, 189, 190, 192, 18dprdcntz 17633 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  C_  ( Z `  ( ( S  |`  C ) `  X
) ) )
194 fvres 5893 . . . . . . . . . . 11  |-  ( y  e.  C  ->  (
( S  |`  C ) `
 y )  =  ( S `  y
) )
195189, 194syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  y
)  =  ( S `
 y ) )
19620ad2antlr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( ( S  |`  C ) `  X
)  =  ( S `
 X ) )
197196fveq2d 5883 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( Z `  (
( S  |`  C ) `
 X ) )  =  ( Z `  ( S `  X ) ) )
198193, 195, 1973sstr3d 3507 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  C )  /\  y  e.  ( C  \  { X } ) )  -> 
( S `  y
)  C_  ( Z `  ( S `  X
) ) )
199198ralrimiva 2840 . . . . . . . 8  |-  ( (
ph  /\  X  e.  C )  ->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
200 iunss 4338 . . . . . . . 8  |-  ( U_ y  e.  ( C  \  { X } ) ( S `  y
)  C_  ( Z `  ( S `  X
) )  <->  A. y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
201199, 200sylibr 216 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  U_ y  e.  ( C  \  { X } ) ( S `
 y )  C_  ( Z `  ( S `
 X ) ) )
202185, 201eqsstr3d 3500 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  U. ( S " ( C  \  { X } ) ) 
C_  ( Z `  ( S `  X ) ) )
20335subgss 16811 . . . . . . . 8  |-  ( ( S `  X )  e.  (SubGrp `  G
)  ->  ( S `  X )  C_  ( Base `  G ) )
204147, 203syl 17 . . . . . . 7  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Base `  G
) )
20535, 18cntzsubg 16983 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( S `  X ) 
C_  ( Base `  G
) )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20659, 204, 205syl2anc 666 . . . . . 6  |-  ( (
ph  /\  X  e.  C )  ->  ( Z `  ( S `  X ) )  e.  (SubGrp `  G )
)
20785mrcsscl 15519 . . . . . 6  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( C  \  { X }
) )  C_  ( Z `  ( S `  X ) )  /\  ( Z `  ( S `
 X ) )  e.  (SubGrp `  G
) )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
20862, 202, 206, 207syl3anc 1265 . . . . 5  |-  ( (
ph  /\  X  e.  C )  ->  ( K `  U. ( S
" ( C  \  { X } ) ) )  C_  ( Z `  ( S `  X
) ) )
20918, 118, 147, 208cntzrecd 17321 . . . 4  |-  ( (
ph  /\  X  e.  C )  ->  ( S `  X )  C_  ( Z `  ( K `  U. ( S
" ( C  \  { X } ) ) ) ) )
210122, 147, 118, 121, 148, 174, 181, 18, 209lsmdisj3 17326 . . 3  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( ( K `  U. ( S
" ( C  \  { X } ) ) ) ( LSSum `  G
) ( G DProd  ( S  |`  D ) ) ) )  =  {  .0.  } )
211144, 210sseqtrd 3501 . 2  |-  ( (
ph  /\  X  e.  C )  ->  (
( S `  X
)  i^i  ( K `  U. ( S "
( I  \  { X } ) ) ) )  C_  {  .0.  } )
21256, 211jca 535 1  |-  ( (
ph  /\  X  e.  C )  ->  (
( Y  e.  I  ->  ( X  =/=  Y  ->  ( S `  X
)  C_  ( Z `  ( S `  Y
) ) ) )  /\  ( ( S `
 X )  i^i  ( K `  U. ( S " ( I 
\  { X }
) ) ) ) 
C_  {  .0.  } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776    \ cdif 3434    u. cun 3435    i^i cin 3436    C_ wss 3437   (/)c0 3762   ~Pcpw 3980   {csn 3997   U.cuni 4217   U_ciun 4297   class class class wbr 4421   dom cdm 4851   ran crn 4852    |` cres 4853   "cima 4854   Fun wfun 5593   -->wf 5595   ` cfv 5599  (class class class)co 6303   Basecbs 15114   0gc0g 15331  Moorecmre 15481  mrClscmrc 15482  ACScacs 15484   Grpcgrp 16662  SubGrpcsubg 16804  Cntzccntz 16962   LSSumclsm 17279   DProd cdprd 17618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-tpos 6979  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-map 7480  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-oi 8029  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-2 10670  df-n0 10872  df-z 10940  df-uz 11162  df-fz 11787  df-fzo 11918  df-seq 12215  df-hash 12517  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-0g 15333  df-gsum 15334  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mhm 16575  df-submnd 16576  df-grp 16666  df-minusg 16667  df-sbg 16668  df-mulg 16669  df-subg 16807  df-ghm 16874  df-gim 16916  df-cntz 16964  df-oppg 16990  df-lsm 17281  df-cmn 17425  df-dprd 17620
This theorem is referenced by:  dmdprdsplit2  17672
  Copyright terms: Public domain W3C validator