MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdpr Structured version   Unicode version

Theorem dmdprdpr 16653
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z  |-  Z  =  (Cntz `  G )
dmdprdpr.0  |-  .0.  =  ( 0g `  G )
dmdprdpr.s  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
dmdprdpr.t  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
Assertion
Ref Expression
dmdprdpr  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( S  C_  ( Z `  T
)  /\  ( S  i^i  T )  =  {  .0.  } ) ) )

Proof of Theorem dmdprdpr
StepHypRef Expression
1 0ex 4520 . . . . . 6  |-  (/)  e.  _V
2 dmdprdpr.s . . . . . 6  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3 dprdsn 16638 . . . . . 6  |-  ( (
(/)  e.  _V  /\  S  e.  (SubGrp `  G )
)  ->  ( G dom DProd  { <. (/) ,  S >. }  /\  ( G DProd  { <. (/)
,  S >. } )  =  S ) )
41, 2, 3sylancr 663 . . . . 5  |-  ( ph  ->  ( G dom DProd  { <. (/)
,  S >. }  /\  ( G DProd  { <. (/) ,  S >. } )  =  S ) )
54simpld 459 . . . 4  |-  ( ph  ->  G dom DProd  { <. (/) ,  S >. } )
6 dmdprdpr.t . . . . . . . 8  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
7 xpscf 14606 . . . . . . . 8  |-  ( `' ( { S }  +c  { T } ) : 2o --> (SubGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G ) ) )
82, 6, 7sylanbrc 664 . . . . . . 7  |-  ( ph  ->  `' ( { S }  +c  { T }
) : 2o --> (SubGrp `  G ) )
9 ffn 5657 . . . . . . 7  |-  ( `' ( { S }  +c  { T } ) : 2o --> (SubGrp `  G )  ->  `' ( { S }  +c  { T } )  Fn  2o )
108, 9syl 16 . . . . . 6  |-  ( ph  ->  `' ( { S }  +c  { T }
)  Fn  2o )
111prid1 4081 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
12 df2o3 7033 . . . . . . 7  |-  2o  =  { (/) ,  1o }
1311, 12eleqtrri 2538 . . . . . 6  |-  (/)  e.  2o
14 fnressn 5993 . . . . . 6  |-  ( ( `' ( { S }  +c  { T }
)  Fn  2o  /\  (/) 
e.  2o )  -> 
( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { S }  +c  { T } ) `  (/) ) >. } )
1510, 13, 14sylancl 662 . . . . 5  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { S }  +c  { T } ) `  (/) ) >. } )
16 xpsc0 14600 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( `' ( { S }  +c  { T } ) `  (/) )  =  S )
172, 16syl 16 . . . . . . 7  |-  ( ph  ->  ( `' ( { S }  +c  { T } ) `  (/) )  =  S )
1817opeq2d 4164 . . . . . 6  |-  ( ph  -> 
<. (/) ,  ( `' ( { S }  +c  { T } ) `
 (/) ) >.  =  <. (/)
,  S >. )
1918sneqd 3987 . . . . 5  |-  ( ph  ->  { <. (/) ,  ( `' ( { S }  +c  { T } ) `
 (/) ) >. }  =  { <. (/) ,  S >. } )
2015, 19eqtrd 2492 . . . 4  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  S >. } )
215, 20breqtrrd 4416 . . 3  |-  ( ph  ->  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )
22 1on 7027 . . . . . 6  |-  1o  e.  On
23 dprdsn 16638 . . . . . 6  |-  ( ( 1o  e.  On  /\  T  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. 1o ,  T >. }  /\  ( G DProd  { <. 1o ,  T >. } )  =  T ) )
2422, 6, 23sylancr 663 . . . . 5  |-  ( ph  ->  ( G dom DProd  { <. 1o ,  T >. }  /\  ( G DProd  { <. 1o ,  T >. } )  =  T ) )
2524simpld 459 . . . 4  |-  ( ph  ->  G dom DProd  { <. 1o ,  T >. } )
2622elexi 3078 . . . . . . . 8  |-  1o  e.  _V
2726prid2 4082 . . . . . . 7  |-  1o  e.  {
(/) ,  1o }
2827, 12eleqtrri 2538 . . . . . 6  |-  1o  e.  2o
29 fnressn 5993 . . . . . 6  |-  ( ( `' ( { S }  +c  { T }
)  Fn  2o  /\  1o  e.  2o )  -> 
( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >. } )
3010, 28, 29sylancl 662 . . . . 5  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >. } )
31 xpsc1 14601 . . . . . . . 8  |-  ( T  e.  (SubGrp `  G
)  ->  ( `' ( { S }  +c  { T } ) `  1o )  =  T
)
326, 31syl 16 . . . . . . 7  |-  ( ph  ->  ( `' ( { S }  +c  { T } ) `  1o )  =  T )
3332opeq2d 4164 . . . . . 6  |-  ( ph  -> 
<. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >.  =  <. 1o ,  T >. )
3433sneqd 3987 . . . . 5  |-  ( ph  ->  { <. 1o ,  ( `' ( { S }  +c  { T }
) `  1o ) >. }  =  { <. 1o ,  T >. } )
3530, 34eqtrd 2492 . . . 4  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  T >. } )
3625, 35breqtrrd 4416 . . 3  |-  ( ph  ->  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )
37 1n0 7035 . . . . . . . . 9  |-  1o  =/=  (/)
3837necomi 2718 . . . . . . . 8  |-  (/)  =/=  1o
39 disjsn2 4035 . . . . . . . 8  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4038, 39mp1i 12 . . . . . . 7  |-  ( ph  ->  ( { (/) }  i^i  { 1o } )  =  (/) )
41 df-pr 3978 . . . . . . . . 9  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
4212, 41eqtri 2480 . . . . . . . 8  |-  2o  =  ( { (/) }  u.  { 1o } )
4342a1i 11 . . . . . . 7  |-  ( ph  ->  2o  =  ( {
(/) }  u.  { 1o } ) )
44 dmdprdpr.z . . . . . . 7  |-  Z  =  (Cntz `  G )
45 dmdprdpr.0 . . . . . . 7  |-  .0.  =  ( 0g `  G )
468, 40, 43, 44, 45dmdprdsplit 16651 . . . . . 6  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  (
( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } ) ) )
47 3anass 969 . . . . . 6  |-  ( ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  (
( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } )  <-> 
( ( G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) ) 
C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } ) ) )
4846, 47syl6bb 261 . . . . 5  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) ) )
4948baibd 900 . . . 4  |-  ( (
ph  /\  ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  -> 
( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) )
5049ex 434 . . 3  |-  ( ph  ->  ( ( G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  ->  ( G dom DProd  `' ( { S }  +c  { T }
)  <->  ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) ) )
5121, 36, 50mp2and 679 . 2  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) )
5220oveq2d 6206 . . . . 5  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  =  ( G DProd  { <. (/)
,  S >. } ) )
534simprd 463 . . . . 5  |-  ( ph  ->  ( G DProd  { <. (/)
,  S >. } )  =  S )
5452, 53eqtrd 2492 . . . 4  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  =  S )
5535oveq2d 6206 . . . . . 6  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  =  ( G DProd  { <. 1o ,  T >. } ) )
5624simprd 463 . . . . . 6  |-  ( ph  ->  ( G DProd  { <. 1o ,  T >. } )  =  T )
5755, 56eqtrd 2492 . . . . 5  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  =  T )
5857fveq2d 5793 . . . 4  |-  ( ph  ->  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  ( Z `  T ) )
5954, 58sseq12d 3483 . . 3  |-  ( ph  ->  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  <->  S  C_  ( Z `  T )
) )
6054, 57ineq12d 3651 . . . 4  |-  ( ph  ->  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  ( S  i^i  T ) )
6160eqeq1d 2453 . . 3  |-  ( ph  ->  ( ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }  <->  ( S  i^i  T )  =  {  .0.  }
) )
6259, 61anbi12d 710 . 2  |-  ( ph  ->  ( ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
)  <->  ( S  C_  ( Z `  T )  /\  ( S  i^i  T )  =  {  .0.  } ) ) )
6351, 62bitrd 253 1  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( S  C_  ( Z `  T
)  /\  ( S  i^i  T )  =  {  .0.  } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   _Vcvv 3068    u. cun 3424    i^i cin 3425    C_ wss 3426   (/)c0 3735   {csn 3975   {cpr 3977   <.cop 3981   class class class wbr 4390   Oncon0 4817   `'ccnv 4937   dom cdm 4938    |` cres 4940    Fn wfn 5511   -->wf 5512   ` cfv 5516  (class class class)co 6190   1oc1o 7013   2oc2o 7014    +c ccda 8437   0gc0g 14480  SubGrpcsubg 15777  Cntzccntz 15935   DProd cdprd 16580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-of 6420  df-om 6577  df-1st 6677  df-2nd 6678  df-supp 6791  df-tpos 6845  df-recs 6932  df-rdg 6966  df-1o 7020  df-2o 7021  df-oadd 7024  df-er 7201  df-map 7316  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-fsupp 7722  df-oi 7825  df-card 8210  df-cda 8438  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-n0 10681  df-z 10748  df-uz 10963  df-fz 11539  df-fzo 11650  df-seq 11908  df-hash 12205  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-ress 14283  df-plusg 14353  df-0g 14482  df-gsum 14483  df-mre 14626  df-mrc 14627  df-acs 14629  df-mnd 15517  df-mhm 15566  df-submnd 15567  df-grp 15647  df-minusg 15648  df-sbg 15649  df-mulg 15650  df-subg 15780  df-ghm 15847  df-gim 15889  df-cntz 15937  df-oppg 15963  df-lsm 16239  df-cmn 16383  df-dprd 16582
This theorem is referenced by:  dprdpr  16654
  Copyright terms: Public domain W3C validator