MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdpr Structured version   Unicode version

Theorem dmdprdpr 16972
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z  |-  Z  =  (Cntz `  G )
dmdprdpr.0  |-  .0.  =  ( 0g `  G )
dmdprdpr.s  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
dmdprdpr.t  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
Assertion
Ref Expression
dmdprdpr  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( S  C_  ( Z `  T
)  /\  ( S  i^i  T )  =  {  .0.  } ) ) )

Proof of Theorem dmdprdpr
StepHypRef Expression
1 0ex 4567 . . . . . 6  |-  (/)  e.  _V
2 dmdprdpr.s . . . . . 6  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3 dprdsn 16957 . . . . . 6  |-  ( (
(/)  e.  _V  /\  S  e.  (SubGrp `  G )
)  ->  ( G dom DProd  { <. (/) ,  S >. }  /\  ( G DProd  { <. (/)
,  S >. } )  =  S ) )
41, 2, 3sylancr 663 . . . . 5  |-  ( ph  ->  ( G dom DProd  { <. (/)
,  S >. }  /\  ( G DProd  { <. (/) ,  S >. } )  =  S ) )
54simpld 459 . . . 4  |-  ( ph  ->  G dom DProd  { <. (/) ,  S >. } )
6 dmdprdpr.t . . . . . . . 8  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
7 xpscf 14840 . . . . . . . 8  |-  ( `' ( { S }  +c  { T } ) : 2o --> (SubGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  T  e.  (SubGrp `  G ) ) )
82, 6, 7sylanbrc 664 . . . . . . 7  |-  ( ph  ->  `' ( { S }  +c  { T }
) : 2o --> (SubGrp `  G ) )
9 ffn 5721 . . . . . . 7  |-  ( `' ( { S }  +c  { T } ) : 2o --> (SubGrp `  G )  ->  `' ( { S }  +c  { T } )  Fn  2o )
108, 9syl 16 . . . . . 6  |-  ( ph  ->  `' ( { S }  +c  { T }
)  Fn  2o )
111prid1 4123 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
12 df2o3 7145 . . . . . . 7  |-  2o  =  { (/) ,  1o }
1311, 12eleqtrri 2530 . . . . . 6  |-  (/)  e.  2o
14 fnressn 6068 . . . . . 6  |-  ( ( `' ( { S }  +c  { T }
)  Fn  2o  /\  (/) 
e.  2o )  -> 
( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { S }  +c  { T } ) `  (/) ) >. } )
1510, 13, 14sylancl 662 . . . . 5  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  ( `' ( { S }  +c  { T } ) `  (/) ) >. } )
16 xpsc0 14834 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  ( `' ( { S }  +c  { T } ) `  (/) )  =  S )
172, 16syl 16 . . . . . . 7  |-  ( ph  ->  ( `' ( { S }  +c  { T } ) `  (/) )  =  S )
1817opeq2d 4209 . . . . . 6  |-  ( ph  -> 
<. (/) ,  ( `' ( { S }  +c  { T } ) `
 (/) ) >.  =  <. (/)
,  S >. )
1918sneqd 4026 . . . . 5  |-  ( ph  ->  { <. (/) ,  ( `' ( { S }  +c  { T } ) `
 (/) ) >. }  =  { <. (/) ,  S >. } )
2015, 19eqtrd 2484 . . . 4  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { (/) } )  =  { <. (/)
,  S >. } )
215, 20breqtrrd 4463 . . 3  |-  ( ph  ->  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )
22 1on 7139 . . . . . 6  |-  1o  e.  On
23 dprdsn 16957 . . . . . 6  |-  ( ( 1o  e.  On  /\  T  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. 1o ,  T >. }  /\  ( G DProd  { <. 1o ,  T >. } )  =  T ) )
2422, 6, 23sylancr 663 . . . . 5  |-  ( ph  ->  ( G dom DProd  { <. 1o ,  T >. }  /\  ( G DProd  { <. 1o ,  T >. } )  =  T ) )
2524simpld 459 . . . 4  |-  ( ph  ->  G dom DProd  { <. 1o ,  T >. } )
2622elexi 3105 . . . . . . . 8  |-  1o  e.  _V
2726prid2 4124 . . . . . . 7  |-  1o  e.  {
(/) ,  1o }
2827, 12eleqtrri 2530 . . . . . 6  |-  1o  e.  2o
29 fnressn 6068 . . . . . 6  |-  ( ( `' ( { S }  +c  { T }
)  Fn  2o  /\  1o  e.  2o )  -> 
( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >. } )
3010, 28, 29sylancl 662 . . . . 5  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >. } )
31 xpsc1 14835 . . . . . . . 8  |-  ( T  e.  (SubGrp `  G
)  ->  ( `' ( { S }  +c  { T } ) `  1o )  =  T
)
326, 31syl 16 . . . . . . 7  |-  ( ph  ->  ( `' ( { S }  +c  { T } ) `  1o )  =  T )
3332opeq2d 4209 . . . . . 6  |-  ( ph  -> 
<. 1o ,  ( `' ( { S }  +c  { T } ) `
 1o ) >.  =  <. 1o ,  T >. )
3433sneqd 4026 . . . . 5  |-  ( ph  ->  { <. 1o ,  ( `' ( { S }  +c  { T }
) `  1o ) >. }  =  { <. 1o ,  T >. } )
3530, 34eqtrd 2484 . . . 4  |-  ( ph  ->  ( `' ( { S }  +c  { T } )  |`  { 1o } )  =  { <. 1o ,  T >. } )
3625, 35breqtrrd 4463 . . 3  |-  ( ph  ->  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )
37 1n0 7147 . . . . . . . . 9  |-  1o  =/=  (/)
3837necomi 2713 . . . . . . . 8  |-  (/)  =/=  1o
39 disjsn2 4076 . . . . . . . 8  |-  ( (/)  =/=  1o  ->  ( { (/)
}  i^i  { 1o } )  =  (/) )
4038, 39mp1i 12 . . . . . . 7  |-  ( ph  ->  ( { (/) }  i^i  { 1o } )  =  (/) )
41 df-pr 4017 . . . . . . . . 9  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
4212, 41eqtri 2472 . . . . . . . 8  |-  2o  =  ( { (/) }  u.  { 1o } )
4342a1i 11 . . . . . . 7  |-  ( ph  ->  2o  =  ( {
(/) }  u.  { 1o } ) )
44 dmdprdpr.z . . . . . . 7  |-  Z  =  (Cntz `  G )
45 dmdprdpr.0 . . . . . . 7  |-  .0.  =  ( 0g `  G )
468, 40, 43, 44, 45dmdprdsplit 16970 . . . . . 6  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  (
( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } ) ) )
47 3anass 978 . . . . . 6  |-  ( ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  (
( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } )  <-> 
( ( G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) ) 
C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  =  {  .0.  } ) ) )
4846, 47syl6bb 261 . . . . 5  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  /\  ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) ) )
4948baibd 909 . . . 4  |-  ( (
ph  /\  ( G dom DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  -> 
( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) )
5049ex 434 . . 3  |-  ( ph  ->  ( ( G dom DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } )  /\  G dom DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  ->  ( G dom DProd  `' ( { S }  +c  { T }
)  <->  ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) ) )
5121, 36, 50mp2and 679 . 2  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
) ) )
5220oveq2d 6297 . . . . 5  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  =  ( G DProd  { <. (/)
,  S >. } ) )
534simprd 463 . . . . 5  |-  ( ph  ->  ( G DProd  { <. (/)
,  S >. } )  =  S )
5452, 53eqtrd 2484 . . . 4  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { (/) } ) )  =  S )
5535oveq2d 6297 . . . . . 6  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  =  ( G DProd  { <. 1o ,  T >. } ) )
5624simprd 463 . . . . . 6  |-  ( ph  ->  ( G DProd  { <. 1o ,  T >. } )  =  T )
5755, 56eqtrd 2484 . . . . 5  |-  ( ph  ->  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) )  =  T )
5857fveq2d 5860 . . . 4  |-  ( ph  ->  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  ( Z `  T ) )
5954, 58sseq12d 3518 . . 3  |-  ( ph  ->  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  <->  S  C_  ( Z `  T )
) )
6054, 57ineq12d 3686 . . . 4  |-  ( ph  ->  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  ( S  i^i  T ) )
6160eqeq1d 2445 . . 3  |-  ( ph  ->  ( ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  i^i  ( G DProd  ( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }  <->  ( S  i^i  T )  =  {  .0.  }
) )
6259, 61anbi12d 710 . 2  |-  ( ph  ->  ( ( ( G DProd 
( `' ( { S }  +c  { T } )  |`  { (/) } ) )  C_  ( Z `  ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { 1o }
) ) )  /\  ( ( G DProd  ( `' ( { S }  +c  { T }
)  |`  { (/) } ) )  i^i  ( G DProd 
( `' ( { S }  +c  { T } )  |`  { 1o } ) ) )  =  {  .0.  }
)  <->  ( S  C_  ( Z `  T )  /\  ( S  i^i  T )  =  {  .0.  } ) ) )
6351, 62bitrd 253 1  |-  ( ph  ->  ( G dom DProd  `' ( { S }  +c  { T } )  <->  ( S  C_  ( Z `  T
)  /\  ( S  i^i  T )  =  {  .0.  } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   _Vcvv 3095    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3770   {csn 4014   {cpr 4016   <.cop 4020   class class class wbr 4437   Oncon0 4868   `'ccnv 4988   dom cdm 4989    |` cres 4991    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281   1oc1o 7125   2oc2o 7126    +c ccda 8550   0gc0g 14714  SubGrpcsubg 16069  Cntzccntz 16227   DProd cdprd 16898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-tpos 6957  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-n0 10802  df-z 10871  df-uz 11091  df-fz 11682  df-fzo 11804  df-seq 12087  df-hash 12385  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-0g 14716  df-gsum 14717  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15840  df-submnd 15841  df-grp 15931  df-minusg 15932  df-sbg 15933  df-mulg 15934  df-subg 16072  df-ghm 16139  df-gim 16181  df-cntz 16229  df-oppg 16255  df-lsm 16530  df-cmn 16674  df-dprd 16900
This theorem is referenced by:  dprdpr  16973
  Copyright terms: Public domain W3C validator