MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Unicode version

Theorem dmdprdd 16588
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z  |-  Z  =  (Cntz `  G )
dmdprd.0  |-  .0.  =  ( 0g `  G )
dmdprd.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
dmdprdd.1  |-  ( ph  ->  G  e.  Grp )
dmdprdd.2  |-  ( ph  ->  I  e.  V )
dmdprdd.3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dmdprdd.4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
dmdprdd.5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
Assertion
Ref Expression
dmdprdd  |-  ( ph  ->  G dom DProd  S )
Distinct variable groups:    x, y, G    x, I, y    ph, x, y    x, S, y    x, V, y
Allowed substitution hints:    K( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2  |-  ( ph  ->  G  e.  Grp )
2 dmdprdd.3 . 2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 eldifsn 4100 . . . . . . 7  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
4 necom 2717 . . . . . . . 8  |-  ( y  =/=  x  <->  x  =/=  y )
54anbi2i 694 . . . . . . 7  |-  ( ( y  e.  I  /\  y  =/=  x )  <->  ( y  e.  I  /\  x  =/=  y ) )
63, 5bitri 249 . . . . . 6  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  x  =/=  y
) )
7 dmdprdd.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
873exp2 1206 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  ->  ( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) ) )
98imp4b 590 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( y  e.  I  /\  x  =/=  y
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
106, 9syl5bi 217 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  ( I 
\  { x }
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
1110ralrimiv 2820 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) ) )
12 dmdprdd.5 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
132ffvelrnda 5944 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
14 dmdprd.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
1514subg0cl 15793 . . . . . . . 8  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  x ) )
1613, 15syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( S `  x
) )
171adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
18 eqid 2451 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
1918subgacs 15820 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
20 acsmre 14694 . . . . . . . . . 10  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
2117, 19, 203syl 20 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
22 imassrn 5280 . . . . . . . . . . . 12  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
23 frn 5665 . . . . . . . . . . . . . 14  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
242, 23syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
2622, 25syl5ss 3467 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  (SubGrp `  G
) )
27 mresspw 14634 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2821, 27syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2926, 28sstrd 3466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
30 sspwuni 4356 . . . . . . . . . 10  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
3129, 30sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
32 dmdprd.k . . . . . . . . . 10  |-  K  =  (mrCls `  (SubGrp `  G
) )
3332mrccl 14653 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( K `  U. ( S "
( I  \  {
x } ) ) )  e.  (SubGrp `  G ) )
3421, 31, 33syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( K `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
3514subg0cl 15793 . . . . . . . 8  |-  ( ( K `  U. ( S " ( I  \  { x } ) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3634, 35syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3716, 36elind 3640 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) ) )
3837snssd 4118 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  {  .0.  } 
C_  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) ) )
3912, 38eqssd 3473 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )
4011, 39jca 532 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
4140ralrimiva 2822 . 2  |-  ( ph  ->  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) )
42 dmdprdd.2 . . 3  |-  ( ph  ->  I  e.  V )
43 fdm 5663 . . . 4  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
442, 43syl 16 . . 3  |-  ( ph  ->  dom  S  =  I )
45 dmdprd.z . . . 4  |-  Z  =  (Cntz `  G )
4645, 14, 32dmdprd 16587 . . 3  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
4742, 44, 46syl2anc 661 . 2  |-  ( ph  ->  ( G dom DProd  S  <->  ( G  e.  Grp  /\  S :
I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
481, 2, 41, 47mpbir3and 1171 1  |-  ( ph  ->  G dom DProd  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795    \ cdif 3425    i^i cin 3427    C_ wss 3428   ~Pcpw 3960   {csn 3977   U.cuni 4191   class class class wbr 4392   dom cdm 4940   ran crn 4941   "cima 4943   -->wf 5514   ` cfv 5518   Basecbs 14278   0gc0g 14482  Moorecmre 14624  mrClscmrc 14625  ACScacs 14627   Grpcgrp 15514  SubGrpcsubg 15779  Cntzccntz 15937   DProd cdprd 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-ixp 7366  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-2 10483  df-ndx 14281  df-slot 14282  df-base 14283  df-sets 14284  df-ress 14285  df-plusg 14355  df-0g 14484  df-mre 14628  df-mrc 14629  df-acs 14631  df-mnd 15519  df-submnd 15569  df-grp 15649  df-minusg 15650  df-subg 15782  df-dprd 16584
This theorem is referenced by:  dprdss  16633  dprdz  16634  dprdf1o  16636  dprdsn  16640  dprd2da  16648  dmdprdsplit2  16652  ablfac1b  16678
  Copyright terms: Public domain W3C validator