MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Unicode version

Theorem dmdprdd 17009
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z  |-  Z  =  (Cntz `  G )
dmdprd.0  |-  .0.  =  ( 0g `  G )
dmdprd.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
dmdprdd.1  |-  ( ph  ->  G  e.  Grp )
dmdprdd.2  |-  ( ph  ->  I  e.  V )
dmdprdd.3  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
dmdprdd.4  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
dmdprdd.5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
Assertion
Ref Expression
dmdprdd  |-  ( ph  ->  G dom DProd  S )
Distinct variable groups:    x, y, G    x, I, y    ph, x, y    x, S, y    x, V, y
Allowed substitution hints:    K( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2  |-  ( ph  ->  G  e.  Grp )
2 dmdprdd.3 . 2  |-  ( ph  ->  S : I --> (SubGrp `  G ) )
3 eldifsn 4140 . . . . . . 7  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  y  =/=  x
) )
4 necom 2712 . . . . . . . 8  |-  ( y  =/=  x  <->  x  =/=  y )
54anbi2i 694 . . . . . . 7  |-  ( ( y  e.  I  /\  y  =/=  x )  <->  ( y  e.  I  /\  x  =/=  y ) )
63, 5bitri 249 . . . . . 6  |-  ( y  e.  ( I  \  { x } )  <-> 
( y  e.  I  /\  x  =/=  y
) )
7 dmdprdd.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  I  /\  x  =/=  y ) )  -> 
( S `  x
)  C_  ( Z `  ( S `  y
) ) )
873exp2 1215 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  ->  ( y  e.  I  ->  ( x  =/=  y  ->  ( S `  x
)  C_  ( Z `  ( S `  y
) ) ) ) ) )
98imp4b 590 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( y  e.  I  /\  x  =/=  y
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
106, 9syl5bi 217 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  ( I 
\  { x }
)  ->  ( S `  x )  C_  ( Z `  ( S `  y ) ) ) )
1110ralrimiv 2855 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) ) )
12 dmdprdd.5 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  C_  {  .0.  } )
132ffvelrnda 6016 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( S `  x )  e.  (SubGrp `  G )
)
14 dmdprd.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
1514subg0cl 16188 . . . . . . . 8  |-  ( ( S `  x )  e.  (SubGrp `  G
)  ->  .0.  e.  ( S `  x ) )
1613, 15syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( S `  x
) )
171adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  G  e.  Grp )
18 eqid 2443 . . . . . . . . . . 11  |-  ( Base `  G )  =  (
Base `  G )
1918subgacs 16215 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
20 acsmre 15031 . . . . . . . . . 10  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
2117, 19, 203syl 20 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
22 imassrn 5338 . . . . . . . . . . . 12  |-  ( S
" ( I  \  { x } ) )  C_  ran  S
23 frn 5727 . . . . . . . . . . . . . 14  |-  ( S : I --> (SubGrp `  G )  ->  ran  S 
C_  (SubGrp `  G )
)
242, 23syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  S  C_  (SubGrp `  G ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ran  S 
C_  (SubGrp `  G )
)
2622, 25syl5ss 3500 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  (SubGrp `  G
) )
27 mresspw 14971 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (Moore `  ( Base `  G
) )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2821, 27syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (SubGrp `  G )  C_  ~P ( Base `  G )
)
2926, 28sstrd 3499 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  ( S " ( I  \  { x } ) )  C_  ~P ( Base `  G ) )
30 sspwuni 4401 . . . . . . . . . 10  |-  ( ( S " ( I 
\  { x }
) )  C_  ~P ( Base `  G )  <->  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)
3129, 30sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  U. ( S " ( I  \  { x } ) )  C_  ( Base `  G ) )
32 dmdprd.k . . . . . . . . . 10  |-  K  =  (mrCls `  (SubGrp `  G
) )
3332mrccl 14990 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " (
I  \  { x } ) )  C_  ( Base `  G )
)  ->  ( K `  U. ( S "
( I  \  {
x } ) ) )  e.  (SubGrp `  G ) )
3421, 31, 33syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  ( K `  U. ( S
" ( I  \  { x } ) ) )  e.  (SubGrp `  G ) )
3514subg0cl 16188 . . . . . . . 8  |-  ( ( K `  U. ( S " ( I  \  { x } ) ) )  e.  (SubGrp `  G )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3634, 35syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( K `  U. ( S " ( I 
\  { x }
) ) ) )
3716, 36elind 3673 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  .0.  e.  ( ( S `  x )  i^i  ( K `  U. ( S
" ( I  \  { x } ) ) ) ) )
3837snssd 4160 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  {  .0.  } 
C_  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) ) )
3912, 38eqssd 3506 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( S `  x
)  i^i  ( K `  U. ( S "
( I  \  {
x } ) ) ) )  =  {  .0.  } )
4011, 39jca 532 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) )
4140ralrimiva 2857 . 2  |-  ( ph  ->  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) )
42 dmdprdd.2 . . 3  |-  ( ph  ->  I  e.  V )
43 fdm 5725 . . . 4  |-  ( S : I --> (SubGrp `  G )  ->  dom  S  =  I )
442, 43syl 16 . . 3  |-  ( ph  ->  dom  S  =  I )
45 dmdprd.z . . . 4  |-  Z  =  (Cntz `  G )
4645, 14, 32dmdprd 17008 . . 3  |-  ( ( I  e.  V  /\  dom  S  =  I )  ->  ( G dom DProd  S  <-> 
( G  e.  Grp  /\  S : I --> (SubGrp `  G )  /\  A. x  e.  I  ( A. y  e.  (
I  \  { x } ) ( S `
 x )  C_  ( Z `  ( S `
 y ) )  /\  ( ( S `
 x )  i^i  ( K `  U. ( S " ( I 
\  { x }
) ) ) )  =  {  .0.  }
) ) ) )
4742, 44, 46syl2anc 661 . 2  |-  ( ph  ->  ( G dom DProd  S  <->  ( G  e.  Grp  /\  S :
I --> (SubGrp `  G )  /\  A. x  e.  I 
( A. y  e.  ( I  \  {
x } ) ( S `  x ) 
C_  ( Z `  ( S `  y ) )  /\  ( ( S `  x )  i^i  ( K `  U. ( S " (
I  \  { x } ) ) ) )  =  {  .0.  } ) ) ) )
481, 2, 41, 47mpbir3and 1180 1  |-  ( ph  ->  G dom DProd  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793    \ cdif 3458    i^i cin 3460    C_ wss 3461   ~Pcpw 3997   {csn 4014   U.cuni 4234   class class class wbr 4437   dom cdm 4989   ran crn 4990   "cima 4992   -->wf 5574   ` cfv 5578   Basecbs 14614   0gc0g 14819  Moorecmre 14961  mrClscmrc 14962  ACScacs 14964   Grpcgrp 16032  SubGrpcsubg 16174  Cntzccntz 16332   DProd cdprd 17003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-2 10601  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-0g 14821  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-grp 16036  df-minusg 16037  df-subg 16177  df-dprd 17005
This theorem is referenced by:  dprdss  17055  dprdz  17056  dprdf1o  17058  dprdsn  17062  dprd2da  17070  dmdprdsplit2  17074  ablfac1b  17100
  Copyright terms: Public domain W3C validator