HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5ati Structured version   Visualization version   Unicode version

Theorem dmdbr5ati 28075
Description: Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
sumdmdi.1  |-  A  e. 
CH
sumdmdi.2  |-  B  e. 
CH
Assertion
Ref Expression
dmdbr5ati  |-  ( A 
MH*  B  <->  A. x  e. HAtoms  (
x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dmdbr5ati
StepHypRef Expression
1 atelch 27997 . . . . . 6  |-  ( x  e. HAtoms  ->  x  e.  CH )
2 sumdmdi.1 . . . . . . . 8  |-  A  e. 
CH
3 sumdmdi.2 . . . . . . . 8  |-  B  e. 
CH
4 dmdi4 27960 . . . . . . . 8  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  x  e.  CH )  ->  ( A  MH*  B  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
52, 3, 4mp3an12 1354 . . . . . . 7  |-  ( x  e.  CH  ->  ( A  MH*  B  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
65com12 32 . . . . . 6  |-  ( A 
MH*  B  ->  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
71, 6syl5 33 . . . . 5  |-  ( A 
MH*  B  ->  ( x  e. HAtoms  ->  ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
87a1dd 47 . . . 4  |-  ( A 
MH*  B  ->  ( x  e. HAtoms  ->  ( x  C_  ( A  vH  B )  ->  ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) ) )
98ralrimiv 2800 . . 3  |-  ( A 
MH*  B  ->  A. x  e. HAtoms  ( x  C_  ( A  vH  B )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) )
10 chjcom 27159 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  ( B  vH  x
)  =  ( x  vH  B ) )
113, 1, 10sylancr 669 . . . . . . . . . . . . . 14  |-  ( x  e. HAtoms  ->  ( B  vH  x )  =  ( x  vH  B ) )
1211ineq1d 3633 . . . . . . . . . . . . 13  |-  ( x  e. HAtoms  ->  ( ( B  vH  x )  i^i  ( B  vH  A
) )  =  ( ( x  vH  B
)  i^i  ( B  vH  A ) ) )
132, 3chjcomi 27121 . . . . . . . . . . . . . 14  |-  ( A  vH  B )  =  ( B  vH  A
)
1413ineq2i 3631 . . . . . . . . . . . . 13  |-  ( ( x  vH  B )  i^i  ( A  vH  B ) )  =  ( ( x  vH  B )  i^i  ( B  vH  A ) )
1512, 14syl6eqr 2503 . . . . . . . . . . . 12  |-  ( x  e. HAtoms  ->  ( ( B  vH  x )  i^i  ( B  vH  A
) )  =  ( ( x  vH  B
)  i^i  ( A  vH  B ) ) )
1615adantr 467 . . . . . . . . . . 11  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( A  vH  B
) )  ->  (
( B  vH  x
)  i^i  ( B  vH  A ) )  =  ( ( x  vH  B )  i^i  ( A  vH  B ) ) )
1713sseq2i 3457 . . . . . . . . . . . . 13  |-  ( x 
C_  ( A  vH  B )  <->  x  C_  ( B  vH  A ) )
1817notbii 298 . . . . . . . . . . . 12  |-  ( -.  x  C_  ( A  vH  B )  <->  -.  x  C_  ( B  vH  A
) )
193, 2atabs2i 28055 . . . . . . . . . . . . 13  |-  ( x  e. HAtoms  ->  ( -.  x  C_  ( B  vH  A
)  ->  ( ( B  vH  x )  i^i  ( B  vH  A
) )  =  B ) )
2019imp 431 . . . . . . . . . . . 12  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( B  vH  A
) )  ->  (
( B  vH  x
)  i^i  ( B  vH  A ) )  =  B )
2118, 20sylan2b 478 . . . . . . . . . . 11  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( A  vH  B
) )  ->  (
( B  vH  x
)  i^i  ( B  vH  A ) )  =  B )
2216, 21eqtr3d 2487 . . . . . . . . . 10  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( A  vH  B
) )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  =  B )
23 chjcl 27010 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  vH  B
)  e.  CH )
241, 3, 23sylancl 668 . . . . . . . . . . . . 13  |-  ( x  e. HAtoms  ->  ( x  vH  B )  e.  CH )
25 chincl 27152 . . . . . . . . . . . . 13  |-  ( ( ( x  vH  B
)  e.  CH  /\  A  e.  CH )  ->  ( ( x  vH  B )  i^i  A
)  e.  CH )
2624, 2, 25sylancl 668 . . . . . . . . . . . 12  |-  ( x  e. HAtoms  ->  ( ( x  vH  B )  i^i 
A )  e.  CH )
27 chub2 27161 . . . . . . . . . . . 12  |-  ( ( B  e.  CH  /\  ( ( x  vH  B )  i^i  A
)  e.  CH )  ->  B  C_  ( (
( x  vH  B
)  i^i  A )  vH  B ) )
283, 26, 27sylancr 669 . . . . . . . . . . 11  |-  ( x  e. HAtoms  ->  B  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)
2928adantr 467 . . . . . . . . . 10  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( A  vH  B
) )  ->  B  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )
3022, 29eqsstrd 3466 . . . . . . . . 9  |-  ( ( x  e. HAtoms  /\  -.  x  C_  ( A  vH  B
) )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )
3130ex 436 . . . . . . . 8  |-  ( x  e. HAtoms  ->  ( -.  x  C_  ( A  vH  B
)  ->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
3231biantrud 510 . . . . . . 7  |-  ( x  e. HAtoms  ->  ( ( x 
C_  ( A  vH  B )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )  <->  ( (
x  C_  ( A  vH  B )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )  /\  ( -.  x  C_  ( A  vH  B )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) ) ) )
33 pm4.83 940 . . . . . . 7  |-  ( ( ( x  C_  ( A  vH  B )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) )  /\  ( -.  x  C_  ( A  vH  B )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) )  <-> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) )
3432, 33syl6bb 265 . . . . . 6  |-  ( x  e. HAtoms  ->  ( ( x 
C_  ( A  vH  B )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )  <->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
3534ralbiia 2818 . . . . 5  |-  ( A. x  e. HAtoms  ( x  C_  ( A  vH  B
)  ->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  <->  A. x  e. HAtoms  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )
362, 3sumdmdlem2 28072 . . . . 5  |-  ( A. x  e. HAtoms  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( A  +H  B
)  =  ( A  vH  B ) )
3735, 36sylbi 199 . . . 4  |-  ( A. x  e. HAtoms  ( x  C_  ( A  vH  B
)  ->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  ->  ( A  +H  B )  =  ( A  vH  B ) )
382, 3sumdmdi 28073 . . . 4  |-  ( ( A  +H  B )  =  ( A  vH  B )  <->  A  MH*  B )
3937, 38sylib 200 . . 3  |-  ( A. x  e. HAtoms  ( x  C_  ( A  vH  B
)  ->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  ->  A  MH*  B )
409, 39impbii 191 . 2  |-  ( A 
MH*  B  <->  A. x  e. HAtoms  (
x  C_  ( A  vH  B )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
413, 2chub2i 27123 . . . . . . . . . . . . 13  |-  B  C_  ( A  vH  B )
4241biantru 508 . . . . . . . . . . . 12  |-  ( x 
C_  ( A  vH  B )  <->  ( x  C_  ( A  vH  B
)  /\  B  C_  ( A  vH  B ) ) )
432, 3chjcli 27110 . . . . . . . . . . . . 13  |-  ( A  vH  B )  e. 
CH
44 chlub 27162 . . . . . . . . . . . . 13  |-  ( ( x  e.  CH  /\  B  e.  CH  /\  ( A  vH  B )  e. 
CH )  ->  (
( x  C_  ( A  vH  B )  /\  B  C_  ( A  vH  B ) )  <->  ( x  vH  B )  C_  ( A  vH  B ) ) )
453, 43, 44mp3an23 1356 . . . . . . . . . . . 12  |-  ( x  e.  CH  ->  (
( x  C_  ( A  vH  B )  /\  B  C_  ( A  vH  B ) )  <->  ( x  vH  B )  C_  ( A  vH  B ) ) )
4642, 45syl5bb 261 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  C_  ( A  vH  B )  <->  ( x  vH  B )  C_  ( A  vH  B ) ) )
47 ssid 3451 . . . . . . . . . . . . 13  |-  ( x  vH  B )  C_  ( x  vH  B )
4847biantrur 509 . . . . . . . . . . . 12  |-  ( ( x  vH  B ) 
C_  ( A  vH  B )  <->  ( (
x  vH  B )  C_  ( x  vH  B
)  /\  ( x  vH  B )  C_  ( A  vH  B ) ) )
49 ssin 3654 . . . . . . . . . . . 12  |-  ( ( ( x  vH  B
)  C_  ( x  vH  B )  /\  (
x  vH  B )  C_  ( A  vH  B
) )  <->  ( x  vH  B )  C_  (
( x  vH  B
)  i^i  ( A  vH  B ) ) )
5048, 49bitri 253 . . . . . . . . . . 11  |-  ( ( x  vH  B ) 
C_  ( A  vH  B )  <->  ( x  vH  B )  C_  (
( x  vH  B
)  i^i  ( A  vH  B ) ) )
5146, 50syl6bb 265 . . . . . . . . . 10  |-  ( x  e.  CH  ->  (
x  C_  ( A  vH  B )  <->  ( x  vH  B )  C_  (
( x  vH  B
)  i^i  ( A  vH  B ) ) ) )
5251biimpa 487 . . . . . . . . 9  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( x  vH  B
)  C_  ( (
x  vH  B )  i^i  ( A  vH  B
) ) )
53 inss1 3652 . . . . . . . . 9  |-  ( ( x  vH  B )  i^i  ( A  vH  B ) )  C_  ( x  vH  B )
5452, 53jctil 540 . . . . . . . 8  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
x  vH  B )  /\  ( x  vH  B
)  C_  ( (
x  vH  B )  i^i  ( A  vH  B
) ) ) )
55 eqss 3447 . . . . . . . 8  |-  ( ( ( x  vH  B
)  i^i  ( A  vH  B ) )  =  ( x  vH  B
)  <->  ( ( ( x  vH  B )  i^i  ( A  vH  B ) )  C_  ( x  vH  B )  /\  ( x  vH  B )  C_  (
( x  vH  B
)  i^i  ( A  vH  B ) ) ) )
5654, 55sylibr 216 . . . . . . 7  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) )  =  ( x  vH  B ) )
5756sseq1d 3459 . . . . . 6  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  <->  ( x  vH  B ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) )
583, 23mpan2 677 . . . . . . . . . . 11  |-  ( x  e.  CH  ->  (
x  vH  B )  e.  CH )
5958, 2, 25sylancl 668 . . . . . . . . . 10  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  e.  CH )
603, 59, 27sylancr 669 . . . . . . . . 9  |-  ( x  e.  CH  ->  B  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )
6160biantrud 510 . . . . . . . 8  |-  ( x  e.  CH  ->  (
x  C_  ( (
( x  vH  B
)  i^i  A )  vH  B )  <->  ( x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  B  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) ) )
62 chjcl 27010 . . . . . . . . . 10  |-  ( ( ( ( x  vH  B )  i^i  A
)  e.  CH  /\  B  e.  CH )  ->  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  e.  CH )
6359, 3, 62sylancl 668 . . . . . . . . 9  |-  ( x  e.  CH  ->  (
( ( x  vH  B )  i^i  A
)  vH  B )  e.  CH )
64 chlub 27162 . . . . . . . . . 10  |-  ( ( x  e.  CH  /\  B  e.  CH  /\  (
( ( x  vH  B )  i^i  A
)  vH  B )  e.  CH )  ->  (
( x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  /\  B  C_  ( ( ( x  vH  B
)  i^i  A )  vH  B ) )  <->  ( x  vH  B )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
653, 64mp3an2 1352 . . . . . . . . 9  |-  ( ( x  e.  CH  /\  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  e.  CH )  ->  ( ( x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  /\  B  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  <->  ( x  vH  B )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
6663, 65mpdan 674 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  /\  B  C_  ( ( ( x  vH  B
)  i^i  A )  vH  B ) )  <->  ( x  vH  B )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
6761, 66bitrd 257 . . . . . . 7  |-  ( x  e.  CH  ->  (
x  C_  ( (
( x  vH  B
)  i^i  A )  vH  B )  <->  ( x  vH  B )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
6867adantr 467 . . . . . 6  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  <->  ( x  vH  B ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) )
6957, 68bitr4d 260 . . . . 5  |-  ( ( x  e.  CH  /\  x  C_  ( A  vH  B ) )  -> 
( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  <->  x 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) )
7069pm5.74da 693 . . . 4  |-  ( x  e.  CH  ->  (
( x  C_  ( A  vH  B )  -> 
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) )  <->  ( x  C_  ( A  vH  B
)  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) ) )
711, 70syl 17 . . 3  |-  ( x  e. HAtoms  ->  ( ( x 
C_  ( A  vH  B )  ->  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )  <->  ( x  C_  ( A  vH  B
)  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) ) )
7271ralbiia 2818 . 2  |-  ( A. x  e. HAtoms  ( x  C_  ( A  vH  B
)  ->  ( (
x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  <->  A. x  e. HAtoms  (
x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
7340, 72bitri 253 1  |-  ( A 
MH*  B  <->  A. x  e. HAtoms  (
x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737    i^i cin 3403    C_ wss 3404   class class class wbr 4402  (class class class)co 6290   CHcch 26582    +H cph 26584    vH chj 26586  HAtomscat 26618    MH* cdmd 26620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cc 8865  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619  ax-hilex 26652  ax-hfvadd 26653  ax-hvcom 26654  ax-hvass 26655  ax-hv0cl 26656  ax-hvaddid 26657  ax-hfvmul 26658  ax-hvmulid 26659  ax-hvmulass 26660  ax-hvdistr1 26661  ax-hvdistr2 26662  ax-hvmul0 26663  ax-hfi 26732  ax-his1 26735  ax-his2 26736  ax-his3 26737  ax-his4 26738  ax-hcompl 26855
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-omul 7187  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-acn 8376  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-cn 20243  df-cnp 20244  df-lm 20245  df-haus 20331  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cfil 22225  df-cau 22226  df-cmet 22227  df-grpo 25919  df-gid 25920  df-ginv 25921  df-gdiv 25922  df-ablo 26010  df-subgo 26030  df-vc 26165  df-nv 26211  df-va 26214  df-ba 26215  df-sm 26216  df-0v 26217  df-vs 26218  df-nmcv 26219  df-ims 26220  df-dip 26337  df-ssp 26361  df-ph 26454  df-cbn 26505  df-hnorm 26621  df-hba 26622  df-hvsub 26624  df-hlim 26625  df-hcau 26626  df-sh 26860  df-ch 26874  df-oc 26905  df-ch0 26906  df-shs 26961  df-span 26962  df-chj 26963  df-chsup 26964  df-pjh 27048  df-cv 27932  df-md 27933  df-dmd 27934  df-at 27991
This theorem is referenced by:  dmdbr6ati  28076  dmdbr7ati  28077
  Copyright terms: Public domain W3C validator