HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr5 Structured version   Visualization version   Unicode version

Theorem dmdbr5 28042
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  (
x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dmdbr5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dmdbr4 28040 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
2 chub1 27241 . . . . . . . . 9  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  x  C_  ( x  vH  B ) )
32ancoms 460 . . . . . . . 8  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  x  C_  ( x  vH  B ) )
4 ssin 3645 . . . . . . . . 9  |-  ( ( x  C_  ( x  vH  B )  /\  x  C_  ( A  vH  B
) )  <->  x  C_  (
( x  vH  B
)  i^i  ( A  vH  B ) ) )
5 sstr2 3425 . . . . . . . . 9  |-  ( x 
C_  ( ( x  vH  B )  i^i  ( A  vH  B
) )  ->  (
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
64, 5sylbi 200 . . . . . . . 8  |-  ( ( x  C_  ( x  vH  B )  /\  x  C_  ( A  vH  B
) )  ->  (
( ( x  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( ( ( x  vH  B )  i^i  A )  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) )
73, 6sylan 479 . . . . . . 7  |-  ( ( ( B  e.  CH  /\  x  e.  CH )  /\  x  C_  ( A  vH  B ) )  ->  ( ( ( x  vH  B )  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) )
87ex 441 . . . . . 6  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  ( x  C_  ( A  vH  B )  -> 
( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  x  C_  ( (
( x  vH  B
)  i^i  A )  vH  B ) ) ) )
98com23 80 . . . . 5  |-  ( ( B  e.  CH  /\  x  e.  CH )  ->  ( ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  ( x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) ) )
109ralimdva 2805 . . . 4  |-  ( B  e.  CH  ->  ( A. x  e.  CH  (
( x  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
)  ->  A. x  e.  CH  ( x  C_  ( A  vH  B )  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
) ) )
1110adantl 473 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  ( ( x  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )  ->  A. x  e.  CH  ( x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) ) )
121, 11sylbid 223 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  ->  A. x  e.  CH  ( x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) ) ) )
13 sseq1 3439 . . . . . . 7  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
x  C_  ( A  vH  B )  <->  ( (
y  vH  B )  i^i  ( A  vH  B
) )  C_  ( A  vH  B ) ) )
14 id 22 . . . . . . . 8  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) ) )
15 oveq1 6315 . . . . . . . . . 10  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
x  vH  B )  =  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B ) )
1615ineq1d 3624 . . . . . . . . 9  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
( x  vH  B
)  i^i  A )  =  ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
) )
1716oveq1d 6323 . . . . . . . 8  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
( ( x  vH  B )  i^i  A
)  vH  B )  =  ( ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i 
A )  vH  B
) )
1814, 17sseq12d 3447 . . . . . . 7  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
x  C_  ( (
( x  vH  B
)  i^i  A )  vH  B )  <->  ( (
y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )
1913, 18imbi12d 327 . . . . . 6  |-  ( x  =  ( ( y  vH  B )  i^i  ( A  vH  B
) )  ->  (
( x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i  A )  vH  B ) )  <->  ( (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) ) )
2019rspccv 3133 . . . . 5  |-  ( A. x  e.  CH  ( x 
C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) )  ->  (
( ( y  vH  B )  i^i  ( A  vH  B ) )  e.  CH  ->  (
( ( y  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( A  vH  B )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) ) )
21 chjcl 27091 . . . . . . . . . . . 12  |-  ( ( y  e.  CH  /\  B  e.  CH )  ->  ( y  vH  B
)  e.  CH )
2221ancoms 460 . . . . . . . . . . 11  |-  ( ( B  e.  CH  /\  y  e.  CH )  ->  ( y  vH  B
)  e.  CH )
2322adantll 728 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( y  vH  B
)  e.  CH )
24 chjcl 27091 . . . . . . . . . . 11  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  vH  B
)  e.  CH )
2524adantr 472 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( A  vH  B
)  e.  CH )
26 chincl 27233 . . . . . . . . . 10  |-  ( ( ( y  vH  B
)  e.  CH  /\  ( A  vH  B )  e.  CH )  -> 
( ( y  vH  B )  i^i  ( A  vH  B ) )  e.  CH )
2723, 25, 26syl2anc 673 . . . . . . . . 9  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( y  vH  B )  i^i  ( A  vH  B ) )  e.  CH )
28 inss2 3644 . . . . . . . . . 10  |-  ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )
29 pm2.27 39 . . . . . . . . . 10  |-  ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
( ( y  vH  B )  i^i  ( A  vH  B ) ) 
C_  ( A  vH  B )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) ) )
3028, 29mpii 43 . . . . . . . . 9  |-  ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )
3127, 30syl 17 . . . . . . . 8  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )
32 chub2 27242 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CH  /\  y  e.  CH )  ->  B  C_  ( y  vH  B ) )
3332adantll 728 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  B  C_  ( y  vH  B ) )
34 chub2 27242 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CH  /\  A  e.  CH )  ->  B  C_  ( A  vH  B ) )
3534ancoms 460 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  B  C_  ( A  vH  B ) )
3635adantr 472 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  B  C_  ( A  vH  B ) )
3733, 36ssind 3647 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  B  C_  ( (
y  vH  B )  i^i  ( A  vH  B
) ) )
38 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  B  e.  CH )
39 chlejb2 27247 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CH  /\  ( ( y  vH  B )  i^i  ( A  vH  B ) )  e.  CH )  -> 
( B  C_  (
( y  vH  B
)  i^i  ( A  vH  B ) )  <->  ( (
( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  =  ( ( y  vH  B
)  i^i  ( A  vH  B ) ) ) )
4038, 27, 39syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( B  C_  (
( y  vH  B
)  i^i  ( A  vH  B ) )  <->  ( (
( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  =  ( ( y  vH  B
)  i^i  ( A  vH  B ) ) ) )
4137, 40mpbid 215 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B
) )  vH  B
)  =  ( ( y  vH  B )  i^i  ( A  vH  B ) ) )
4241ineq1d 3624 . . . . . . . . . . 11  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  =  ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  i^i 
A ) )
43 inass 3633 . . . . . . . . . . . . 13  |-  ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  i^i 
A )  =  ( ( y  vH  B
)  i^i  ( ( A  vH  B )  i^i 
A ) )
44 incom 3616 . . . . . . . . . . . . . . 15  |-  ( ( A  vH  B )  i^i  A )  =  ( A  i^i  ( A  vH  B ) )
45 chabs2 27251 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  i^i  ( A  vH  B ) )  =  A )
4644, 45syl5eq 2517 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( ( A  vH  B )  i^i  A
)  =  A )
4746ineq2d 3625 . . . . . . . . . . . . 13  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( ( y  vH  B )  i^i  (
( A  vH  B
)  i^i  A )
)  =  ( ( y  vH  B )  i^i  A ) )
4843, 47syl5eq 2517 . . . . . . . . . . . 12  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B
) )  i^i  A
)  =  ( ( y  vH  B )  i^i  A ) )
4948adantr 472 . . . . . . . . . . 11  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B
) )  i^i  A
)  =  ( ( y  vH  B )  i^i  A ) )
5042, 49eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  =  ( ( y  vH  B )  i^i  A ) )
5150oveq1d 6323 . . . . . . . . 9  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( ( ( y  vH  B
)  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )  =  ( ( ( y  vH  B )  i^i  A )  vH  B ) )
5251sseq2d 3446 . . . . . . . 8  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )  <->  ( ( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( y  vH  B )  i^i 
A )  vH  B
) ) )
5331, 52sylibd 222 . . . . . . 7  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  y  e.  CH )  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( y  vH  B )  i^i 
A )  vH  B
) ) )
5453ex 441 . . . . . 6  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( y  e.  CH  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( y  vH  B )  i^i 
A )  vH  B
) ) ) )
5554com23 80 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  e. 
CH  ->  ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  C_  ( A  vH  B )  ->  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( ( ( y  vH  B )  i^i  ( A  vH  B ) )  vH  B )  i^i  A
)  vH  B )
) )  ->  (
y  e.  CH  ->  ( ( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( y  vH  B )  i^i 
A )  vH  B
) ) ) )
5620, 55syl5 32 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  ( A  vH  B )  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  ->  ( y  e.  CH  ->  ( (
y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( y  vH  B )  i^i  A
)  vH  B )
) ) )
5756ralrimdv 2811 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  ( A  vH  B )  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  ->  A. y  e.  CH  ( ( y  vH  B )  i^i  ( A  vH  B
) )  C_  (
( ( y  vH  B )  i^i  A
)  vH  B )
) )
58 dmdbr4 28040 . . 3  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. y  e.  CH  (
( y  vH  B
)  i^i  ( A  vH  B ) )  C_  ( ( ( y  vH  B )  i^i 
A )  vH  B
) ) )
5957, 58sylibrd 242 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A. x  e. 
CH  ( x  C_  ( A  vH  B )  ->  x  C_  (
( ( x  vH  B )  i^i  A
)  vH  B )
)  ->  A  MH*  B ) )
6012, 59impbid 195 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  (
x  C_  ( A  vH  B )  ->  x  C_  ( ( ( x  vH  B )  i^i 
A )  vH  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756    i^i cin 3389    C_ wss 3390   class class class wbr 4395  (class class class)co 6308   CHcch 26663    vH chj 26667    MH* cdmd 26701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637  ax-hilex 26733  ax-hfvadd 26734  ax-hvcom 26735  ax-hvass 26736  ax-hv0cl 26737  ax-hvaddid 26738  ax-hfvmul 26739  ax-hvmulid 26740  ax-hvmulass 26741  ax-hvdistr1 26742  ax-hvdistr2 26743  ax-hvmul0 26744  ax-hfi 26813  ax-his1 26816  ax-his2 26817  ax-his3 26818  ax-his4 26819  ax-hcompl 26936
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-rlim 13630  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-cn 20320  df-cnp 20321  df-lm 20322  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cfil 22303  df-cau 22304  df-cmet 22305  df-grpo 26000  df-gid 26001  df-ginv 26002  df-gdiv 26003  df-ablo 26091  df-subgo 26111  df-vc 26246  df-nv 26292  df-va 26295  df-ba 26296  df-sm 26297  df-0v 26298  df-vs 26299  df-nmcv 26300  df-ims 26301  df-dip 26418  df-ssp 26442  df-ph 26535  df-cbn 26586  df-hnorm 26702  df-hba 26703  df-hvsub 26705  df-hlim 26706  df-hcau 26707  df-sh 26941  df-ch 26955  df-oc 26986  df-ch0 26987  df-shs 27042  df-chj 27044  df-dmd 28015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator