HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdbr Structured version   Unicode version

Theorem dmdbr 27631
Description: Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  ( B  C_  x  ->  (
( x  i^i  A
)  vH  B )  =  ( x  i^i  ( A  vH  B
) ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem dmdbr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2474 . . . . 5  |-  ( y  =  A  ->  (
y  e.  CH  <->  A  e.  CH ) )
21anbi1d 703 . . . 4  |-  ( y  =  A  ->  (
( y  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  z  e.  CH )
) )
3 ineq2 3635 . . . . . . . 8  |-  ( y  =  A  ->  (
x  i^i  y )  =  ( x  i^i 
A ) )
43oveq1d 6293 . . . . . . 7  |-  ( y  =  A  ->  (
( x  i^i  y
)  vH  z )  =  ( ( x  i^i  A )  vH  z ) )
5 oveq1 6285 . . . . . . . 8  |-  ( y  =  A  ->  (
y  vH  z )  =  ( A  vH  z ) )
65ineq2d 3641 . . . . . . 7  |-  ( y  =  A  ->  (
x  i^i  ( y  vH  z ) )  =  ( x  i^i  ( A  vH  z ) ) )
74, 6eqeq12d 2424 . . . . . 6  |-  ( y  =  A  ->  (
( ( x  i^i  y )  vH  z
)  =  ( x  i^i  ( y  vH  z ) )  <->  ( (
x  i^i  A )  vH  z )  =  ( x  i^i  ( A  vH  z ) ) ) )
87imbi2d 314 . . . . 5  |-  ( y  =  A  ->  (
( z  C_  x  ->  ( ( x  i^i  y )  vH  z
)  =  ( x  i^i  ( y  vH  z ) ) )  <-> 
( z  C_  x  ->  ( ( x  i^i 
A )  vH  z
)  =  ( x  i^i  ( A  vH  z ) ) ) ) )
98ralbidv 2843 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  CH  (
z  C_  x  ->  ( ( x  i^i  y
)  vH  z )  =  ( x  i^i  ( y  vH  z
) ) )  <->  A. x  e.  CH  ( z  C_  x  ->  ( ( x  i^i  A )  vH  z )  =  ( x  i^i  ( A  vH  z ) ) ) ) )
102, 9anbi12d 709 . . 3  |-  ( y  =  A  ->  (
( ( y  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( z  C_  x  ->  ( ( x  i^i  y )  vH  z )  =  ( x  i^i  ( y  vH  z ) ) ) )  <->  ( ( A  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( z 
C_  x  ->  (
( x  i^i  A
)  vH  z )  =  ( x  i^i  ( A  vH  z
) ) ) ) ) )
11 eleq1 2474 . . . . 5  |-  ( z  =  B  ->  (
z  e.  CH  <->  B  e.  CH ) )
1211anbi2d 702 . . . 4  |-  ( z  =  B  ->  (
( A  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
13 sseq1 3463 . . . . . 6  |-  ( z  =  B  ->  (
z  C_  x  <->  B  C_  x
) )
14 oveq2 6286 . . . . . . 7  |-  ( z  =  B  ->  (
( x  i^i  A
)  vH  z )  =  ( ( x  i^i  A )  vH  B ) )
15 oveq2 6286 . . . . . . . 8  |-  ( z  =  B  ->  ( A  vH  z )  =  ( A  vH  B
) )
1615ineq2d 3641 . . . . . . 7  |-  ( z  =  B  ->  (
x  i^i  ( A  vH  z ) )  =  ( x  i^i  ( A  vH  B ) ) )
1714, 16eqeq12d 2424 . . . . . 6  |-  ( z  =  B  ->  (
( ( x  i^i 
A )  vH  z
)  =  ( x  i^i  ( A  vH  z ) )  <->  ( (
x  i^i  A )  vH  B )  =  ( x  i^i  ( A  vH  B ) ) ) )
1813, 17imbi12d 318 . . . . 5  |-  ( z  =  B  ->  (
( z  C_  x  ->  ( ( x  i^i 
A )  vH  z
)  =  ( x  i^i  ( A  vH  z ) ) )  <-> 
( B  C_  x  ->  ( ( x  i^i 
A )  vH  B
)  =  ( x  i^i  ( A  vH  B ) ) ) ) )
1918ralbidv 2843 . . . 4  |-  ( z  =  B  ->  ( A. x  e.  CH  (
z  C_  x  ->  ( ( x  i^i  A
)  vH  z )  =  ( x  i^i  ( A  vH  z
) ) )  <->  A. x  e.  CH  ( B  C_  x  ->  ( ( x  i^i  A )  vH  B )  =  ( x  i^i  ( A  vH  B ) ) ) ) )
2012, 19anbi12d 709 . . 3  |-  ( z  =  B  ->  (
( ( A  e. 
CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( z  C_  x  ->  ( ( x  i^i  A )  vH  z )  =  ( x  i^i  ( A  vH  z ) ) ) )  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( B 
C_  x  ->  (
( x  i^i  A
)  vH  B )  =  ( x  i^i  ( A  vH  B
) ) ) ) ) )
21 df-dmd 27613 . . 3  |-  MH*  =  { <. y ,  z
>.  |  ( (
y  e.  CH  /\  z  e.  CH )  /\  A. x  e.  CH  ( z  C_  x  ->  ( ( x  i^i  y )  vH  z
)  =  ( x  i^i  ( y  vH  z ) ) ) ) }
2210, 20, 21brabg 4709 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  A. x  e.  CH  ( B  C_  x  -> 
( ( x  i^i 
A )  vH  B
)  =  ( x  i^i  ( A  vH  B ) ) ) ) ) )
2322bianabs 881 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  ( B  C_  x  ->  (
( x  i^i  A
)  vH  B )  =  ( x  i^i  ( A  vH  B
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754    i^i cin 3413    C_ wss 3414   class class class wbr 4395  (class class class)co 6278   CHcch 26260    vH chj 26264    MH* cdmd 26298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-iota 5533  df-fv 5577  df-ov 6281  df-dmd 27613
This theorem is referenced by:  dmdmd  27632  dmdi  27634  dmdbr2  27635  dmdbr3  27637  mddmd2  27641
  Copyright terms: Public domain W3C validator