Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmct Structured version   Unicode version

Theorem dmct 26158
Description: The domain of a countable set is countable. (Contributed by Thierry Arnoux, 29-Dec-2016.)
Assertion
Ref Expression
dmct  |-  ( A  ~<_  om  ->  dom  A  ~<_  om )

Proof of Theorem dmct
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dmresv 5397 . 2  |-  dom  ( A  |`  _V )  =  dom  A
2 resss 5235 . . . . 5  |-  ( A  |`  _V )  C_  A
3 ctex 26152 . . . . 5  |-  ( A  ~<_  om  ->  A  e.  _V )
4 ssexg 4539 . . . . 5  |-  ( ( ( A  |`  _V )  C_  A  /\  A  e. 
_V )  ->  ( A  |`  _V )  e. 
_V )
52, 3, 4sylancr 663 . . . 4  |-  ( A  ~<_  om  ->  ( A  |` 
_V )  e.  _V )
6 fvex 5802 . . . . . . 7  |-  ( 1st `  x )  e.  _V
7 eqid 2451 . . . . . . 7  |-  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) )  =  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) )
86, 7fnmpti 5640 . . . . . 6  |-  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) )  Fn  ( A  |`  _V )
9 dffn4 5727 . . . . . 6  |-  ( ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) )  Fn  ( A  |`  _V )  <->  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) ) )
108, 9mpbi 208 . . . . 5  |-  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) )
11 relres 5239 . . . . . 6  |-  Rel  ( A  |`  _V )
12 reldm 6728 . . . . . 6  |-  ( Rel  ( A  |`  _V )  ->  dom  ( A  |`  _V )  =  ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) )
13 foeq3 5719 . . . . . 6  |-  ( dom  ( A  |`  _V )  =  ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) )  ->  (
( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) ) : ( A  |`  _V ) -onto-> dom  ( A  |`  _V )  <->  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) ) ) )
1411, 12, 13mp2b 10 . . . . 5  |-  ( ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> dom  ( A  |`  _V )  <->  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> ran  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x
) ) )
1510, 14mpbir 209 . . . 4  |-  ( x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> dom  ( A  |`  _V )
16 fodomg 8796 . . . 4  |-  ( ( A  |`  _V )  e.  _V  ->  ( (
x  e.  ( A  |`  _V )  |->  ( 1st `  x ) ) : ( A  |`  _V ) -onto-> dom  ( A  |`  _V )  ->  dom  ( A  |`  _V )  ~<_  ( A  |` 
_V ) ) )
175, 15, 16mpisyl 18 . . 3  |-  ( A  ~<_  om  ->  dom  ( A  |`  _V )  ~<_  ( A  |`  _V ) )
18 ssdomg 7458 . . . . 5  |-  ( A  e.  _V  ->  (
( A  |`  _V )  C_  A  ->  ( A  |` 
_V )  ~<_  A ) )
193, 2, 18mpisyl 18 . . . 4  |-  ( A  ~<_  om  ->  ( A  |` 
_V )  ~<_  A )
20 domtr 7465 . . . 4  |-  ( ( ( A  |`  _V )  ~<_  A  /\  A  ~<_  om )  ->  ( A  |`  _V )  ~<_  om )
2119, 20mpancom 669 . . 3  |-  ( A  ~<_  om  ->  ( A  |` 
_V )  ~<_  om )
22 domtr 7465 . . 3  |-  ( ( dom  ( A  |`  _V )  ~<_  ( A  |` 
_V )  /\  ( A  |`  _V )  ~<_  om )  ->  dom  ( A  |`  _V )  ~<_  om )
2317, 21, 22syl2anc 661 . 2  |-  ( A  ~<_  om  ->  dom  ( A  |`  _V )  ~<_  om )
241, 23syl5eqbrr 4427 1  |-  ( A  ~<_  om  ->  dom  A  ~<_  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   _Vcvv 3071    C_ wss 3429   class class class wbr 4393    |-> cmpt 4451   dom cdm 4941   ran crn 4942    |` cres 4943   Rel wrel 4946    Fn wfn 5514   -onto->wfo 5517   ` cfv 5519   omcom 6579   1stc1st 6678    ~<_ cdom 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-ac2 8736
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-recs 6935  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-card 8213  df-acn 8216  df-ac 8390
This theorem is referenced by:  rnct  26160
  Copyright terms: Public domain W3C validator