MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmcosseq Structured version   Unicode version

Theorem dmcosseq 5270
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)

Proof of Theorem dmcosseq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 5268 . . 3  |-  dom  ( A  o.  B )  C_ 
dom  B
21a1i 11 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  C_  dom  B )
3 ssel 3503 . . . . . . . 8  |-  ( ran 
B  C_  dom  A  -> 
( y  e.  ran  B  ->  y  e.  dom  A ) )
4 vex 3121 . . . . . . . . . . 11  |-  y  e. 
_V
54elrn 5249 . . . . . . . . . 10  |-  ( y  e.  ran  B  <->  E. x  x B y )
64eldm 5206 . . . . . . . . . 10  |-  ( y  e.  dom  A  <->  E. z 
y A z )
75, 6imbi12i 326 . . . . . . . . 9  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  <->  ( E. x  x B y  ->  E. z 
y A z ) )
8 19.8a 1806 . . . . . . . . . . 11  |-  ( x B y  ->  E. x  x B y )
98imim1i 58 . . . . . . . . . 10  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z 
y A z ) )
10 pm3.2 447 . . . . . . . . . . 11  |-  ( x B y  ->  (
y A z  -> 
( x B y  /\  y A z ) ) )
1110eximdv 1686 . . . . . . . . . 10  |-  ( x B y  ->  ( E. z  y A
z  ->  E. z
( x B y  /\  y A z ) ) )
129, 11sylcom 29 . . . . . . . . 9  |-  ( ( E. x  x B y  ->  E. z 
y A z )  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
137, 12sylbi 195 . . . . . . . 8  |-  ( ( y  e.  ran  B  ->  y  e.  dom  A
)  ->  ( x B y  ->  E. z
( x B y  /\  y A z ) ) )
143, 13syl 16 . . . . . . 7  |-  ( ran 
B  C_  dom  A  -> 
( x B y  ->  E. z ( x B y  /\  y A z ) ) )
1514eximdv 1686 . . . . . 6  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. y E. z ( x B y  /\  y A z ) ) )
16 excom 1798 . . . . . 6  |-  ( E. z E. y ( x B y  /\  y A z )  <->  E. y E. z ( x B y  /\  y A z ) )
1715, 16syl6ibr 227 . . . . 5  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z E. y ( x B y  /\  y A z ) ) )
18 vex 3121 . . . . . . 7  |-  x  e. 
_V
19 vex 3121 . . . . . . 7  |-  z  e. 
_V
2018, 19opelco 5180 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( A  o.  B
)  <->  E. y ( x B y  /\  y A z ) )
2120exbii 1644 . . . . 5  |-  ( E. z <. x ,  z
>.  e.  ( A  o.  B )  <->  E. z E. y ( x B y  /\  y A z ) )
2217, 21syl6ibr 227 . . . 4  |-  ( ran 
B  C_  dom  A  -> 
( E. y  x B y  ->  E. z <. x ,  z >.  e.  ( A  o.  B
) ) )
2318eldm 5206 . . . 4  |-  ( x  e.  dom  B  <->  E. y  x B y )
2418eldm2 5207 . . . 4  |-  ( x  e.  dom  ( A  o.  B )  <->  E. z <. x ,  z >.  e.  ( A  o.  B
) )
2522, 23, 243imtr4g 270 . . 3  |-  ( ran 
B  C_  dom  A  -> 
( x  e.  dom  B  ->  x  e.  dom  ( A  o.  B
) ) )
2625ssrdv 3515 . 2  |-  ( ran 
B  C_  dom  A  ->  dom  B  C_  dom  ( A  o.  B ) )
272, 26eqssd 3526 1  |-  ( ran 
B  C_  dom  A  ->  dom  ( A  o.  B
)  =  dom  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    C_ wss 3481   <.cop 4039   class class class wbr 4453   dom cdm 5005   ran crn 5006    o. ccom 5009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-br 4454  df-opab 4512  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016
This theorem is referenced by:  dmcoeq  5271  fnco  5695  dvsinax  31564  fnresfnco  32001
  Copyright terms: Public domain W3C validator