MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatmul Structured version   Visualization version   Unicode version

Theorem dmatmul 19522
Description: The product of two diagonal matrices. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a  |-  A  =  ( N Mat  R )
dmatid.b  |-  B  =  ( Base `  A
)
dmatid.0  |-  .0.  =  ( 0g `  R )
dmatid.d  |-  D  =  ( N DMat  R )
Assertion
Ref Expression
dmatmul  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( X ( .r `  A ) Y )  =  ( x  e.  N ,  y  e.  N  |->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  ) ) )
Distinct variable groups:    x, D, y    x, N, y    x, R, y    x, X, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    .0. ( x, y)

Proof of Theorem dmatmul
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . . 6  |-  A  =  ( N Mat  R )
2 eqid 2451 . . . . . 6  |-  ( R maMul  <. N ,  N ,  N >. )  =  ( R maMul  <. N ,  N ,  N >. )
31, 2matmulr 19463 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
43adantr 467 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
54eqcomd 2457 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( .r `  A )  =  ( R maMul  <. N ,  N ,  N >. ) )
65oveqd 6307 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( X ( .r `  A ) Y )  =  ( X ( R maMul  <. N ,  N ,  N >. ) Y ) )
7 eqid 2451 . . 3  |-  ( Base `  R )  =  (
Base `  R )
8 eqid 2451 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
9 simplr 762 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  R  e.  Ring )
10 simpll 760 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  N  e.  Fin )
11 dmatid.b . . . . . . 7  |-  B  =  ( Base `  A
)
12 dmatid.0 . . . . . . 7  |-  .0.  =  ( 0g `  R )
13 dmatid.d . . . . . . 7  |-  D  =  ( N DMat  R )
141, 11, 12, 13dmatmat 19519 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  D  ->  X  e.  B ) )
1514imp 431 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  X  e.  D
)  ->  X  e.  B )
161, 7, 11matbas2i 19447 . . . . 5  |-  ( X  e.  B  ->  X  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
1715, 16syl 17 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  X  e.  D
)  ->  X  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
1817adantrr 723 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  X  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
191, 11, 12, 13dmatmat 19519 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( Y  e.  D  ->  Y  e.  B ) )
2019imp 431 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  Y  e.  D
)  ->  Y  e.  B )
211, 7, 11matbas2i 19447 . . . . 5  |-  ( Y  e.  B  ->  Y  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
2220, 21syl 17 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  Y  e.  D
)  ->  Y  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
2322adantrl 722 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  Y  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
242, 7, 8, 9, 10, 10, 10, 18, 23mamuval 19411 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( X ( R maMul  <. N ,  N ,  N >. ) Y )  =  ( x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) ) ) )
25 eqid 2451 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
26 ringcmn 17811 . . . . . . . . . 10  |-  ( R  e.  Ring  ->  R  e. CMnd
)
2726ad2antlr 733 . . . . . . . . 9  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  R  e. CMnd )
28273ad2ant1 1029 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  R  e. CMnd )
2928adantl 468 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  R  e. CMnd )
30103ad2ant1 1029 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  N  e.  Fin )
3130adantl 468 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  N  e.  Fin )
32 eqid 2451 . . . . . . . 8  |-  ( k  e.  N  |->  ( ( x X k ) ( .r `  R
) ( k Y y ) ) )  =  ( k  e.  N  |->  ( ( x X k ) ( .r `  R ) ( k Y y ) ) )
33 ovex 6318 . . . . . . . . 9  |-  ( ( x X k ) ( .r `  R
) ( k Y y ) )  e. 
_V
3433a1i 11 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( ( x X k ) ( .r
`  R ) ( k Y y ) )  e.  _V )
35 fvex 5875 . . . . . . . . 9  |-  ( 0g
`  R )  e. 
_V
3635a1i 11 . . . . . . . 8  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( 0g `  R )  e. 
_V )
3732, 31, 34, 36fsuppmptdm 7894 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  (
k  e.  N  |->  ( ( x X k ) ( .r `  R ) ( k Y y ) ) ) finSupp  ( 0g `  R ) )
3893ad2ant1 1029 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  R  e.  Ring )
3938ad2antlr 733 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  R  e.  Ring )
40 simp2 1009 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  x  e.  N )
4140ad2antlr 733 . . . . . . . . 9  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  x  e.  N )
42 simpr 463 . . . . . . . . 9  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  k  e.  N )
43 eqid 2451 . . . . . . . . . . . . . 14  |-  ( Base `  A )  =  (
Base `  A )
441, 43, 12, 13dmatmat 19519 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  D  ->  X  e.  ( Base `  A ) ) )
4544imp 431 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  X  e.  D
)  ->  X  e.  ( Base `  A )
)
4645adantrr 723 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  X  e.  ( Base `  A
) )
47463ad2ant1 1029 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  X  e.  ( Base `  A ) )
4847ad2antlr 733 . . . . . . . . 9  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  X  e.  ( Base `  A ) )
491, 7matecl 19450 . . . . . . . . 9  |-  ( ( x  e.  N  /\  k  e.  N  /\  X  e.  ( Base `  A ) )  -> 
( x X k )  e.  ( Base `  R ) )
5041, 42, 48, 49syl3anc 1268 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( x X k )  e.  ( Base `  R ) )
51 simplr3 1052 . . . . . . . . 9  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  y  e.  N )
521, 43, 12, 13dmatmat 19519 . . . . . . . . . . . . 13  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( Y  e.  D  ->  Y  e.  ( Base `  A ) ) )
5352imp 431 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  Y  e.  D
)  ->  Y  e.  ( Base `  A )
)
5453adantrl 722 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  Y  e.  ( Base `  A
) )
55543ad2ant1 1029 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  Y  e.  ( Base `  A ) )
5655ad2antlr 733 . . . . . . . . 9  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  Y  e.  ( Base `  A ) )
571, 7matecl 19450 . . . . . . . . 9  |-  ( ( k  e.  N  /\  y  e.  N  /\  Y  e.  ( Base `  A ) )  -> 
( k Y y )  e.  ( Base `  R ) )
5842, 51, 56, 57syl3anc 1268 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( k Y y )  e.  ( Base `  R ) )
597, 8ringcl 17794 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x X k )  e.  ( Base `  R
)  /\  ( k Y y )  e.  ( Base `  R
) )  ->  (
( x X k ) ( .r `  R ) ( k Y y ) )  e.  ( Base `  R
) )
6039, 50, 58, 59syl3anc 1268 . . . . . . 7  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( ( x X k ) ( .r
`  R ) ( k Y y ) )  e.  ( Base `  R ) )
6140adantl 468 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  x  e.  N )
62 simp3 1010 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  y  e.  N )
6315adantrr 723 . . . . . . . . . . . 12  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  X  e.  B )
6463, 11syl6eleq 2539 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  X  e.  ( Base `  A
) )
65643ad2ant1 1029 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  X  e.  ( Base `  A ) )
661, 7matecl 19450 . . . . . . . . . 10  |-  ( ( x  e.  N  /\  y  e.  N  /\  X  e.  ( Base `  A ) )  -> 
( x X y )  e.  ( Base `  R ) )
6740, 62, 65, 66syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( x X y )  e.  ( Base `  R ) )
6852a1d 26 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( X  e.  D  ->  ( Y  e.  D  ->  Y  e.  ( Base `  A ) ) ) )
6968imp32 435 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  Y  e.  ( Base `  A
) )
70693ad2ant1 1029 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  Y  e.  ( Base `  A ) )
711, 7matecl 19450 . . . . . . . . . 10  |-  ( ( x  e.  N  /\  y  e.  N  /\  Y  e.  ( Base `  A ) )  -> 
( x Y y )  e.  ( Base `  R ) )
7240, 62, 70, 71syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( x Y y )  e.  ( Base `  R ) )
737, 8ringcl 17794 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x X y )  e.  ( Base `  R
)  /\  ( x Y y )  e.  ( Base `  R
) )  ->  (
( x X y ) ( .r `  R ) ( x Y y ) )  e.  ( Base `  R
) )
7438, 67, 72, 73syl3anc 1268 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( ( x X y ) ( .r
`  R ) ( x Y y ) )  e.  ( Base `  R ) )
7574adantl 468 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  (
( x X y ) ( .r `  R ) ( x Y y ) )  e.  ( Base `  R
) )
76 eqtr 2470 . . . . . . . . . . 11  |-  ( ( k  =  x  /\  x  =  y )  ->  k  =  y )
7776ancoms 455 . . . . . . . . . 10  |-  ( ( x  =  y  /\  k  =  x )  ->  k  =  y )
7877oveq2d 6306 . . . . . . . . 9  |-  ( ( x  =  y  /\  k  =  x )  ->  ( x X k )  =  ( x X y ) )
7978adantlr 721 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  =  x )  ->  ( x X k )  =  ( x X y ) )
80 oveq1 6297 . . . . . . . . 9  |-  ( k  =  x  ->  (
k Y y )  =  ( x Y y ) )
8180adantl 468 . . . . . . . 8  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  =  x )  ->  ( k Y y )  =  ( x Y y ) )
8279, 81oveq12d 6308 . . . . . . 7  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  =  x )  ->  ( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  ( ( x X y ) ( .r `  R
) ( x Y y ) ) )
837, 25, 29, 31, 37, 60, 61, 75, 82gsumdifsnd 17593 . . . . . 6  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  ( ( R  gsumg  ( k  e.  ( N  \  { x } ) 
|->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) ) ( +g  `  R ) ( ( x X y ) ( .r
`  R ) ( x Y y ) ) ) )
84 simprl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  X  e.  D )
8510, 9, 843jca 1188 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D ) )
86853ad2ant1 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D ) )
8786ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  ( N  e.  Fin  /\  R  e. 
Ring  /\  X  e.  D
) )
8840ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  x  e.  N )
89 eldifi 3555 . . . . . . . . . . . . . 14  |-  ( k  e.  ( N  \  { x } )  ->  k  e.  N
)
9089adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  k  e.  N )
91 eldifsni 4098 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( N  \  { x } )  ->  k  =/=  x
)
9291necomd 2679 . . . . . . . . . . . . . 14  |-  ( k  e.  ( N  \  { x } )  ->  x  =/=  k
)
9392adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  x  =/=  k )
941, 11, 12, 13dmatelnd 19521 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D )  /\  (
x  e.  N  /\  k  e.  N  /\  x  =/=  k ) )  ->  ( x X k )  =  .0.  )
9587, 88, 90, 93, 94syl13anc 1270 . . . . . . . . . . . 12  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  ( x X k )  =  .0.  )
9695oveq1d 6305 . . . . . . . . . . 11  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  ( (
x X k ) ( .r `  R
) ( k Y y ) )  =  (  .0.  ( .r
`  R ) ( k Y y ) ) )
9738ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  R  e.  Ring )
98 simplr3 1052 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  y  e.  N )
9955ad2antlr 733 . . . . . . . . . . . . 13  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  Y  e.  ( Base `  A )
)
10090, 98, 99, 57syl3anc 1268 . . . . . . . . . . . 12  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  ( k Y y )  e.  ( Base `  R
) )
1017, 8, 12ringlz 17817 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  (
k Y y )  e.  ( Base `  R
) )  ->  (  .0.  ( .r `  R
) ( k Y y ) )  =  .0.  )
10297, 100, 101syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  (  .0.  ( .r `  R ) ( k Y y ) )  =  .0.  )
10396, 102eqtrd 2485 . . . . . . . . . 10  |-  ( ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  ( N  \  { x } ) )  ->  ( (
x X k ) ( .r `  R
) ( k Y y ) )  =  .0.  )
104103mpteq2dva 4489 . . . . . . . . 9  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  (
k  e.  ( N 
\  { x }
)  |->  ( ( x X k ) ( .r `  R ) ( k Y y ) ) )  =  ( k  e.  ( N  \  { x } )  |->  .0.  )
)
105104oveq2d 6306 . . . . . . . 8  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  ( N  \  { x } )  |->  ( ( x X k ) ( .r `  R
) ( k Y y ) ) ) )  =  ( R 
gsumg  ( k  e.  ( N  \  { x } )  |->  .0.  )
) )
106 diffi 7803 . . . . . . . . . . . . 13  |-  ( N  e.  Fin  ->  ( N  \  { x }
)  e.  Fin )
107 ringmnd 17789 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
108106, 107anim12ci 571 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R  e.  Mnd  /\  ( N  \  {
x } )  e. 
Fin ) )
109108adantr 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( R  e.  Mnd  /\  ( N  \  { x }
)  e.  Fin )
)
1101093ad2ant1 1029 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( R  e.  Mnd  /\  ( N  \  {
x } )  e. 
Fin ) )
111110adantl 468 . . . . . . . . 9  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  e.  Mnd  /\  ( N  \  { x }
)  e.  Fin )
)
11212gsumz 16621 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  ( N  \  { x } )  e.  Fin )  ->  ( R  gsumg  ( k  e.  ( N  \  { x } ) 
|->  .0.  ) )  =  .0.  )
113111, 112syl 17 . . . . . . . 8  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  ( N  \  { x } )  |->  .0.  )
)  =  .0.  )
114105, 113eqtrd 2485 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  ( N  \  { x } )  |->  ( ( x X k ) ( .r `  R
) ( k Y y ) ) ) )  =  .0.  )
115114oveq1d 6305 . . . . . 6  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  (
( R  gsumg  ( k  e.  ( N  \  { x } )  |->  ( ( x X k ) ( .r `  R
) ( k Y y ) ) ) ) ( +g  `  R
) ( ( x X y ) ( .r `  R ) ( x Y y ) ) )  =  (  .0.  ( +g  `  R ) ( ( x X y ) ( .r `  R
) ( x Y y ) ) ) )
116107ad2antlr 733 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  R  e.  Mnd )
1171163ad2ant1 1029 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  R  e.  Mnd )
11840, 62, 55, 71syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( x Y y )  e.  ( Base `  R ) )
11938, 67, 118, 73syl3anc 1268 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( ( x X y ) ( .r
`  R ) ( x Y y ) )  e.  ( Base `  R ) )
120117, 119jca 535 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( R  e.  Mnd  /\  ( ( x X y ) ( .r
`  R ) ( x Y y ) )  e.  ( Base `  R ) ) )
121120adantl 468 . . . . . . 7  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  e.  Mnd  /\  (
( x X y ) ( .r `  R ) ( x Y y ) )  e.  ( Base `  R
) ) )
1227, 25, 12mndlid 16557 . . . . . . 7  |-  ( ( R  e.  Mnd  /\  ( ( x X y ) ( .r
`  R ) ( x Y y ) )  e.  ( Base `  R ) )  -> 
(  .0.  ( +g  `  R ) ( ( x X y ) ( .r `  R
) ( x Y y ) ) )  =  ( ( x X y ) ( .r `  R ) ( x Y y ) ) )
123121, 122syl 17 . . . . . 6  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  (  .0.  ( +g  `  R
) ( ( x X y ) ( .r `  R ) ( x Y y ) ) )  =  ( ( x X y ) ( .r
`  R ) ( x Y y ) ) )
12483, 115, 1233eqtrd 2489 . . . . 5  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  ( ( x X y ) ( .r
`  R ) ( x Y y ) ) )
125 iftrue 3887 . . . . . 6  |-  ( x  =  y  ->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  )  =  ( (
x X y ) ( .r `  R
) ( x Y y ) ) )
126125adantr 467 . . . . 5  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  )  =  ( (
x X y ) ( .r `  R
) ( x Y y ) ) )
127124, 126eqtr4d 2488 . . . 4  |-  ( ( x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  if ( x  =  y ,  ( ( x X y ) ( .r `  R
) ( x Y y ) ) ,  .0.  ) )
128 simprr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  Y  e.  D )
12910, 9, 1283jca 1188 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  Y  e.  D ) )
1301293ad2ant1 1029 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  Y  e.  D ) )
131130ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  Y  e.  D ) )
132131adantl 468 . . . . . . . . . . 11  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
( N  e.  Fin  /\  R  e.  Ring  /\  Y  e.  D ) )
133 simprr 766 . . . . . . . . . . 11  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
k  e.  N )
134 simplr3 1052 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  y  e.  N )
135134adantl 468 . . . . . . . . . . 11  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
y  e.  N )
136 df-ne 2624 . . . . . . . . . . . . . . 15  |-  ( x  =/=  y  <->  -.  x  =  y )
137 neeq1 2686 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
x  =/=  y  <->  k  =/=  y ) )
138137biimpcd 228 . . . . . . . . . . . . . . 15  |-  ( x  =/=  y  ->  (
x  =  k  -> 
k  =/=  y ) )
139136, 138sylbir 217 . . . . . . . . . . . . . 14  |-  ( -.  x  =  y  -> 
( x  =  k  ->  k  =/=  y
) )
140139adantr 467 . . . . . . . . . . . . 13  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  -> 
( x  =  k  ->  k  =/=  y
) )
141140adantr 467 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( x  =  k  ->  k  =/=  y
) )
142141impcom 432 . . . . . . . . . . 11  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
k  =/=  y )
1431, 11, 12, 13dmatelnd 19521 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  Y  e.  D )  /\  (
k  e.  N  /\  y  e.  N  /\  k  =/=  y ) )  ->  ( k Y y )  =  .0.  )
144132, 133, 135, 142, 143syl13anc 1270 . . . . . . . . . 10  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
( k Y y )  =  .0.  )
145144oveq2d 6306 . . . . . . . . 9  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  ( ( x X k ) ( .r `  R
)  .0.  ) )
14638ad2antlr 733 . . . . . . . . . . 11  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  R  e.  Ring )
14740ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  x  e.  N )
148 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  k  e.  N )
14965ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  X  e.  ( Base `  A ) )
150147, 148, 149, 49syl3anc 1268 . . . . . . . . . . 11  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( x X k )  e.  ( Base `  R ) )
1517, 8, 12ringrz 17818 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x X k )  e.  ( Base `  R
) )  ->  (
( x X k ) ( .r `  R )  .0.  )  =  .0.  )
152146, 150, 151syl2anc 667 . . . . . . . . . 10  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( ( x X k ) ( .r
`  R )  .0.  )  =  .0.  )
153152adantl 468 . . . . . . . . 9  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
( ( x X k ) ( .r
`  R )  .0.  )  =  .0.  )
154145, 153eqtrd 2485 . . . . . . . 8  |-  ( ( x  =  k  /\  ( ( -.  x  =  y  /\  (
( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )
)  /\  k  e.  N ) )  -> 
( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  .0.  )
15586ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D ) )
156155adantl 468 . . . . . . . . . . 11  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
( N  e.  Fin  /\  R  e.  Ring  /\  X  e.  D ) )
157147adantl 468 . . . . . . . . . . 11  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  ->  x  e.  N )
158 simprr 766 . . . . . . . . . . 11  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
k  e.  N )
159 df-ne 2624 . . . . . . . . . . . . 13  |-  ( x  =/=  k  <->  -.  x  =  k )
160159biimpri 210 . . . . . . . . . . . 12  |-  ( -.  x  =  k  ->  x  =/=  k )
161160adantr 467 . . . . . . . . . . 11  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  ->  x  =/=  k )
162156, 157, 158, 161, 94syl13anc 1270 . . . . . . . . . 10  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
( x X k )  =  .0.  )
163162oveq1d 6305 . . . . . . . . 9  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  (  .0.  ( .r `  R
) ( k Y y ) ) )
16470ad2antlr 733 . . . . . . . . . . . 12  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  Y  e.  ( Base `  A ) )
165148, 134, 164, 57syl3anc 1268 . . . . . . . . . . 11  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( k Y y )  e.  ( Base `  R ) )
166146, 165, 101syl2anc 667 . . . . . . . . . 10  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  (  .0.  ( .r
`  R ) ( k Y y ) )  =  .0.  )
167166adantl 468 . . . . . . . . 9  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
(  .0.  ( .r
`  R ) ( k Y y ) )  =  .0.  )
168163, 167eqtrd 2485 . . . . . . . 8  |-  ( ( -.  x  =  k  /\  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D )
)  /\  x  e.  N  /\  y  e.  N
) )  /\  k  e.  N ) )  -> 
( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  .0.  )
169154, 168pm2.61ian 799 . . . . . . 7  |-  ( ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  /\  k  e.  N )  ->  ( ( x X k ) ( .r
`  R ) ( k Y y ) )  =  .0.  )
170169mpteq2dva 4489 . . . . . 6  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  -> 
( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) )  =  ( k  e.  N  |->  .0.  ) )
171170oveq2d 6306 . . . . 5  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  -> 
( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  ( R  gsumg  ( k  e.  N  |->  .0.  ) ) )
172107anim2i 573 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( N  e.  Fin  /\  R  e.  Mnd )
)
173172ancomd 453 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R  e.  Mnd  /\  N  e.  Fin )
)
17412gsumz 16621 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  N  e.  Fin )  ->  ( R  gsumg  ( k  e.  N  |->  .0.  ) )  =  .0.  )
175173, 174syl 17 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R  gsumg  ( k  e.  N  |->  .0.  ) )  =  .0.  )
176175adantr 467 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( R  gsumg  ( k  e.  N  |->  .0.  ) )  =  .0.  )
1771763ad2ant1 1029 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( R  gsumg  ( k  e.  N  |->  .0.  ) )  =  .0.  )
178177adantl 468 . . . . 5  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  -> 
( R  gsumg  ( k  e.  N  |->  .0.  ) )  =  .0.  )
179 iffalse 3890 . . . . . . 7  |-  ( -.  x  =  y  ->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  )  =  .0.  )
180179eqcomd 2457 . . . . . 6  |-  ( -.  x  =  y  ->  .0.  =  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  ) )
181180adantr 467 . . . . 5  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  ->  .0.  =  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  ) )
182171, 178, 1813eqtrd 2489 . . . 4  |-  ( ( -.  x  =  y  /\  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  /\  x  e.  N  /\  y  e.  N ) )  -> 
( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  if ( x  =  y ,  ( ( x X y ) ( .r `  R
) ( x Y y ) ) ,  .0.  ) )
183127, 182pm2.61ian 799 . . 3  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D ) )  /\  x  e.  N  /\  y  e.  N )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) )  =  if ( x  =  y ,  ( ( x X y ) ( .r `  R
) ( x Y y ) ) ,  .0.  ) )
184183mpt2eq3dva 6355 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  (
x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( k  e.  N  |->  ( ( x X k ) ( .r
`  R ) ( k Y y ) ) ) ) )  =  ( x  e.  N ,  y  e.  N  |->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  ) ) )
1856, 24, 1843eqtrd 2489 1  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( X  e.  D  /\  Y  e.  D
) )  ->  ( X ( .r `  A ) Y )  =  ( x  e.  N ,  y  e.  N  |->  if ( x  =  y ,  ( ( x X y ) ( .r `  R ) ( x Y y ) ) ,  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   _Vcvv 3045    \ cdif 3401   ifcif 3881   {csn 3968   <.cotp 3976    |-> cmpt 4461    X. cxp 4832   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292    ^m cmap 7472   Fincfn 7569   Basecbs 15121   +g cplusg 15190   .rcmulr 15191   0gc0g 15338    gsumg cgsu 15339   Mndcmnd 16535  CMndccmn 17430   Ringcrg 17780   maMul cmmul 19408   Mat cmat 19432   DMat cdmat 19513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-ot 3977  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-sup 7956  df-oi 8025  df-card 8373  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12214  df-hash 12516  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-hom 15214  df-cco 15215  df-0g 15340  df-gsum 15341  df-prds 15346  df-pws 15348  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-sra 18395  df-rgmod 18396  df-dsmm 19295  df-frlm 19310  df-mamu 19409  df-mat 19433  df-dmat 19515
This theorem is referenced by:  dmatmulcl  19525  dmatcrng  19527  scmatscmiddistr  19533  scmatcrng  19546
  Copyright terms: Public domain W3C validator