![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dmatcomp | Structured version Unicode version |
Description: The components of diagonal matrices. (Contributed by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
mamucl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mamucl.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mamudiag.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mamudiag.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mamudiag.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
mamudiag.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dmatcomp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2455 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ifbid 3911 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eqeq2 2466 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ifbid 3911 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | mamudiag.i |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | mamudiag.o |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | fvex 5801 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | eqeltri 2535 |
. . 3
![]() ![]() ![]() ![]() |
9 | mamudiag.z |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | fvex 5801 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eqeltri 2535 |
. . 3
![]() ![]() ![]() ![]() |
12 | 8, 11 | ifex 3958 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 4, 5, 12 | ovmpt2 6328 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-sep 4513 ax-nul 4521 ax-pr 4631 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-ral 2800 df-rex 2801 df-rab 2804 df-v 3072 df-sbc 3287 df-dif 3431 df-un 3433 df-in 3435 df-ss 3442 df-nul 3738 df-if 3892 df-sn 3978 df-pr 3980 df-op 3984 df-uni 4192 df-br 4393 df-opab 4451 df-id 4736 df-xp 4946 df-rel 4947 df-cnv 4948 df-co 4949 df-dm 4950 df-iota 5481 df-fun 5520 df-fv 5526 df-ov 6195 df-oprab 6196 df-mpt2 6197 |
This theorem is referenced by: mamulid 18415 mamurid 18416 |
Copyright terms: Public domain | W3C validator |