HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmadjss Structured version   Unicode version

Theorem dmadjss 27219
Description: The domain of the adjoint function is a subset of the maps from  ~H to  ~H. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmadjss  |-  dom  adjh  C_  ( ~H  ^m  ~H )

Proof of Theorem dmadjss
Dummy variables  u  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfadj2 27217 . . . 4  |-  adjh  =  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) }
2 3anass 978 . . . . . 6  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( t : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
3 ax-hilex 26330 . . . . . . . 8  |-  ~H  e.  _V
43, 3elmap 7485 . . . . . . 7  |-  ( t  e.  ( ~H  ^m  ~H )  <->  t : ~H --> ~H )
54anbi1i 693 . . . . . 6  |-  ( ( t  e.  ( ~H 
^m  ~H )  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) )  <->  ( t : ~H --> ~H  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) )
62, 5bitr4i 252 . . . . 5  |-  ( ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) )  <->  ( t  e.  ( ~H  ^m  ~H )  /\  ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) ) )
76opabbii 4459 . . . 4  |-  { <. t ,  u >.  |  ( t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) }  =  { <. t ,  u >.  |  ( t  e.  ( ~H  ^m  ~H )  /\  ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) ) }
81, 7eqtri 2431 . . 3  |-  adjh  =  { <. t ,  u >.  |  ( t  e.  ( ~H  ^m  ~H )  /\  ( u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( u `  x
)  .ih  y )
) ) }
98dmeqi 5025 . 2  |-  dom  adjh  =  dom  { <. t ,  u >.  |  (
t  e.  ( ~H 
^m  ~H )  /\  (
u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( t `  y ) )  =  ( ( u `  x )  .ih  y
) ) ) }
10 dmopabss 5035 . 2  |-  dom  { <. t ,  u >.  |  ( t  e.  ( ~H  ^m  ~H )  /\  ( u : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( t `
 y ) )  =  ( ( u `
 x )  .ih  y ) ) ) }  C_  ( ~H  ^m 
~H )
119, 10eqsstri 3472 1  |-  dom  adjh  C_  ( ~H  ^m  ~H )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754    C_ wss 3414   {copab 4452   dom cdm 4823   -->wf 5565   ` cfv 5569  (class class class)co 6278    ^m cmap 7457   ~Hchil 26250    .ih csp 26253   adjhcado 26286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-hilex 26330  ax-hfi 26410  ax-his1 26413
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-2 10635  df-cj 13081  df-re 13082  df-im 13083  df-adjh 27181
This theorem is referenced by:  dmadjop  27220
  Copyright terms: Public domain W3C validator