MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Unicode version

Theorem dmaddpi 9257
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi  |-  dom  +N  =  ( N.  X.  N. )

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5285 . . 3  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  dom  +o  )
2 fnoa 7148 . . . . 5  |-  +o  Fn  ( On  X.  On )
3 fndm 5671 . . . . 5  |-  (  +o  Fn  ( On  X.  On )  ->  dom  +o  =  ( On  X.  On ) )
42, 3ax-mp 5 . . . 4  |-  dom  +o  =  ( On  X.  On )
54ineq2i 3690 . . 3  |-  ( ( N.  X.  N. )  i^i  dom  +o  )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
61, 5eqtri 2489 . 2  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
7 df-pli 9240 . . 3  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
87dmeqi 5195 . 2  |-  dom  +N  =  dom  (  +o  |`  ( N.  X.  N. ) )
9 df-ni 9239 . . . . . . 7  |-  N.  =  ( om  \  { (/) } )
10 difss 3624 . . . . . . 7  |-  ( om 
\  { (/) } ) 
C_  om
119, 10eqsstri 3527 . . . . . 6  |-  N.  C_  om
12 omsson 6675 . . . . . 6  |-  om  C_  On
1311, 12sstri 3506 . . . . 5  |-  N.  C_  On
14 anidm 644 . . . . 5  |-  ( ( N.  C_  On  /\  N.  C_  On )  <->  N.  C_  On )
1513, 14mpbir 209 . . . 4  |-  ( N.  C_  On  /\  N.  C_  On )
16 xpss12 5099 . . . 4  |-  ( ( N.  C_  On  /\  N.  C_  On )  ->  ( N.  X.  N. )  C_  ( On  X.  On ) )
1715, 16ax-mp 5 . . 3  |-  ( N. 
X.  N. )  C_  ( On  X.  On )
18 dfss 3484 . . 3  |-  ( ( N.  X.  N. )  C_  ( On  X.  On ) 
<->  ( N.  X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) ) )
1917, 18mpbi 208 . 2  |-  ( N. 
X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
206, 8, 193eqtr4i 2499 1  |-  dom  +N  =  ( N.  X.  N. )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1374    \ cdif 3466    i^i cin 3468    C_ wss 3469   (/)c0 3778   {csn 4020   Oncon0 4871    X. cxp 4990   dom cdm 4992    |` cres 4994    Fn wfn 5574   omcom 6671    +o coa 7117   N.cnpi 9211    +N cpli 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fv 5587  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-oadd 7124  df-ni 9239  df-pli 9240
This theorem is referenced by:  addcompi  9261  addasspi  9262  distrpi  9265  addcanpi  9266  addnidpi  9268  ltapi  9270
  Copyright terms: Public domain W3C validator