MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmaddpi Structured version   Unicode version

Theorem dmaddpi 9266
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dmaddpi  |-  dom  +N  =  ( N.  X.  N. )

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 5280 . . 3  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  dom  +o  )
2 fnoa 7156 . . . . 5  |-  +o  Fn  ( On  X.  On )
3 fndm 5666 . . . . 5  |-  (  +o  Fn  ( On  X.  On )  ->  dom  +o  =  ( On  X.  On ) )
42, 3ax-mp 5 . . . 4  |-  dom  +o  =  ( On  X.  On )
54ineq2i 3679 . . 3  |-  ( ( N.  X.  N. )  i^i  dom  +o  )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
61, 5eqtri 2470 . 2  |-  dom  (  +o  |`  ( N.  X.  N. ) )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
7 df-pli 9249 . . 3  |-  +N  =  (  +o  |`  ( N.  X.  N. ) )
87dmeqi 5190 . 2  |-  dom  +N  =  dom  (  +o  |`  ( N.  X.  N. ) )
9 df-ni 9248 . . . . . . 7  |-  N.  =  ( om  \  { (/) } )
10 difss 3613 . . . . . . 7  |-  ( om 
\  { (/) } ) 
C_  om
119, 10eqsstri 3516 . . . . . 6  |-  N.  C_  om
12 omsson 6685 . . . . . 6  |-  om  C_  On
1311, 12sstri 3495 . . . . 5  |-  N.  C_  On
14 anidm 644 . . . . 5  |-  ( ( N.  C_  On  /\  N.  C_  On )  <->  N.  C_  On )
1513, 14mpbir 209 . . . 4  |-  ( N.  C_  On  /\  N.  C_  On )
16 xpss12 5094 . . . 4  |-  ( ( N.  C_  On  /\  N.  C_  On )  ->  ( N.  X.  N. )  C_  ( On  X.  On ) )
1715, 16ax-mp 5 . . 3  |-  ( N. 
X.  N. )  C_  ( On  X.  On )
18 dfss 3473 . . 3  |-  ( ( N.  X.  N. )  C_  ( On  X.  On ) 
<->  ( N.  X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) ) )
1917, 18mpbi 208 . 2  |-  ( N. 
X.  N. )  =  ( ( N.  X.  N. )  i^i  ( On  X.  On ) )
206, 8, 193eqtr4i 2480 1  |-  dom  +N  =  ( N.  X.  N. )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1381    \ cdif 3455    i^i cin 3457    C_ wss 3458   (/)c0 3767   {csn 4010   Oncon0 4864    X. cxp 4983   dom cdm 4985    |` cres 4987    Fn wfn 5569   omcom 6681    +o coa 7125   N.cnpi 9220    +N cpli 9221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-fv 5582  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-oadd 7132  df-ni 9248  df-pli 9249
This theorem is referenced by:  addcompi  9270  addasspi  9271  distrpi  9274  addcanpi  9275  addnidpi  9277  ltapi  9279
  Copyright terms: Public domain W3C validator