Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhval Structured version   Unicode version

Theorem djhval 35406
Description: Subspace join for  DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h  |-  H  =  ( LHyp `  K
)
djhval.u  |-  U  =  ( ( DVecH `  K
) `  W )
djhval.v  |-  V  =  ( Base `  U
)
djhval.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
djhval.j  |-  .\/  =  ( (joinH `  K ) `  W )
Assertion
Ref Expression
djhval  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  ( X  .\/  Y )  =  (  ._|_  `  ( ( 
._|_  `  X )  i^i  (  ._|_  `  Y ) ) ) )

Proof of Theorem djhval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djhval.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 djhval.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
3 djhval.v . . . . 5  |-  V  =  ( Base `  U
)
4 djhval.o . . . . 5  |-  ._|_  =  ( ( ocH `  K
) `  W )
5 djhval.j . . . . 5  |-  .\/  =  ( (joinH `  K ) `  W )
61, 2, 3, 4, 5djhfval 35405 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  .\/  =  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
76adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  .\/  =  ( x  e.  ~P V ,  y  e.  ~P V  |->  (  ._|_  `  ( (  ._|_  `  x
)  i^i  (  ._|_  `  y ) ) ) ) )
87oveqd 6220 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  ( X  .\/  Y )  =  ( X ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y ) )
9 fvex 5812 . . . . . . 7  |-  ( Base `  U )  e.  _V
103, 9eqeltri 2538 . . . . . 6  |-  V  e. 
_V
1110elpw2 4567 . . . . 5  |-  ( X  e.  ~P V  <->  X  C_  V
)
1211biimpri 206 . . . 4  |-  ( X 
C_  V  ->  X  e.  ~P V )
1312ad2antrl 727 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  X  e.  ~P V )
1410elpw2 4567 . . . . 5  |-  ( Y  e.  ~P V  <->  Y  C_  V
)
1514biimpri 206 . . . 4  |-  ( Y 
C_  V  ->  Y  e.  ~P V )
1615ad2antll 728 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  Y  e.  ~P V )
17 fvex 5812 . . . 4  |-  (  ._|_  `  ( (  ._|_  `  X
)  i^i  (  ._|_  `  Y ) ) )  e.  _V
1817a1i 11 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  (  ._|_  `  Y ) ) )  e.  _V )
19 fveq2 5802 . . . . . 6  |-  ( x  =  X  ->  (  ._|_  `  x )  =  (  ._|_  `  X ) )
2019ineq1d 3662 . . . . 5  |-  ( x  =  X  ->  (
(  ._|_  `  x )  i^i  (  ._|_  `  y
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  y
) ) )
2120fveq2d 5806 . . . 4  |-  ( x  =  X  ->  (  ._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) )  =  (  ._|_  `  ( (  ._|_  `  X
)  i^i  (  ._|_  `  y ) ) ) )
22 fveq2 5802 . . . . . 6  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
2322ineq2d 3663 . . . . 5  |-  ( y  =  Y  ->  (
(  ._|_  `  X )  i^i  (  ._|_  `  y
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) )
2423fveq2d 5806 . . . 4  |-  ( y  =  Y  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  (  ._|_  `  y ) ) )  =  (  ._|_  `  ( (  ._|_  `  X
)  i^i  (  ._|_  `  Y ) ) ) )
25 eqid 2454 . . . 4  |-  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) )  =  ( x  e.  ~P V ,  y  e.  ~P V  |->  (  ._|_  `  ( (  ._|_  `  x
)  i^i  (  ._|_  `  y ) ) ) )
2621, 24, 25ovmpt2g 6338 . . 3  |-  ( ( X  e.  ~P V  /\  Y  e.  ~P V  /\  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) )  e. 
_V )  ->  ( X ( x  e. 
~P V ,  y  e.  ~P V  |->  ( 
._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y )  =  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) ) )
2713, 16, 18, 26syl3anc 1219 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  ( X ( x  e. 
~P V ,  y  e.  ~P V  |->  ( 
._|_  `  ( (  ._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) Y )  =  (  ._|_  `  (
(  ._|_  `  X )  i^i  (  ._|_  `  Y
) ) ) )
288, 27eqtrd 2495 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  C_  V  /\  Y  C_  V
) )  ->  ( X  .\/  Y )  =  (  ._|_  `  ( ( 
._|_  `  X )  i^i  (  ._|_  `  Y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    i^i cin 3438    C_ wss 3439   ~Pcpw 3971   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   Basecbs 14296   HLchlt 33358   LHypclh 33991   DVecHcdvh 35086   ocHcoch 35355  joinHcdjh 35402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-djh 35403
This theorem is referenced by:  djhval2  35407  djhcl  35408  djhlj  35409  djhexmid  35419
  Copyright terms: Public domain W3C validator