Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhfval Structured version   Unicode version

Theorem djhfval 34703
Description: Subspace join for  DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h  |-  H  =  ( LHyp `  K
)
djhval.u  |-  U  =  ( ( DVecH `  K
) `  W )
djhval.v  |-  V  =  ( Base `  U
)
djhval.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
djhval.j  |-  .\/  =  ( (joinH `  K ) `  W )
Assertion
Ref Expression
djhfval  |-  ( ( K  e.  X  /\  W  e.  H )  ->  .\/  =  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
Distinct variable groups:    x, y, K    x, V, y    x, W, y
Allowed substitution hints:    U( x, y)    H( x, y)    .\/ ( x, y)    ._|_ ( x, y)    X( x, y)

Proof of Theorem djhfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 djhval.j . . 3  |-  .\/  =  ( (joinH `  K ) `  W )
2 djhval.h . . . . 5  |-  H  =  ( LHyp `  K
)
32djhffval 34702 . . . 4  |-  ( K  e.  X  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
43fveq1d 5874 . . 3  |-  ( K  e.  X  ->  (
(joinH `  K ) `  W )  =  ( ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) `  W
) )
51, 4syl5eq 2473 . 2  |-  ( K  e.  X  ->  .\/  =  ( ( w  e.  H  |->  ( x  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) `  W
) )
6 fveq2 5872 . . . . . . 7  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
76fveq2d 5876 . . . . . 6  |-  ( w  =  W  ->  ( Base `  ( ( DVecH `  K ) `  w
) )  =  (
Base `  ( ( DVecH `  K ) `  W ) ) )
8 djhval.v . . . . . . 7  |-  V  =  ( Base `  U
)
9 djhval.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
109fveq2i 5875 . . . . . . 7  |-  ( Base `  U )  =  (
Base `  ( ( DVecH `  K ) `  W ) )
118, 10eqtri 2449 . . . . . 6  |-  V  =  ( Base `  (
( DVecH `  K ) `  W ) )
127, 11syl6eqr 2479 . . . . 5  |-  ( w  =  W  ->  ( Base `  ( ( DVecH `  K ) `  w
) )  =  V )
1312pweqd 3981 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  ( ( DVecH `  K ) `  w ) )  =  ~P V )
14 fveq2 5872 . . . . . 6  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ( ( ocH `  K ) `  W
) )
15 djhval.o . . . . . 6  |-  ._|_  =  ( ( ocH `  K
) `  W )
1614, 15syl6eqr 2479 . . . . 5  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ._|_  )
1716fveq1d 5874 . . . . . 6  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  x )  =  ( 
._|_  `  x ) )
1816fveq1d 5874 . . . . . 6  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  y )  =  ( 
._|_  `  y ) )
1917, 18ineq12d 3662 . . . . 5  |-  ( w  =  W  ->  (
( ( ( ocH `  K ) `  w
) `  x )  i^i  ( ( ( ocH `  K ) `  w
) `  y )
)  =  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) )
2016, 19fveq12d 5878 . . . 4  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) )  =  (  ._|_  `  (
(  ._|_  `  x )  i^i  (  ._|_  `  y
) ) ) )
2113, 13, 20mpt2eq123dv 6358 . . 3  |-  ( w  =  W  ->  (
x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) )  =  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
22 eqid 2420 . . 3  |-  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )
23 fvex 5882 . . . . . 6  |-  ( Base `  U )  e.  _V
248, 23eqeltri 2504 . . . . 5  |-  V  e. 
_V
2524pwex 4599 . . . 4  |-  ~P V  e.  _V
2625, 25mpt2ex 6875 . . 3  |-  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) )  e. 
_V
2721, 22, 26fvmpt 5955 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) `  W
)  =  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
285, 27sylan9eq 2481 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  .\/  =  ( x  e.  ~P V , 
y  e.  ~P V  |->  (  ._|_  `  ( ( 
._|_  `  x )  i^i  (  ._|_  `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   _Vcvv 3078    i^i cin 3432   ~Pcpw 3976    |-> cmpt 4475   ` cfv 5592    |-> cmpt2 6298   Basecbs 15073   LHypclh 33287   DVecHcdvh 34384   ocHcoch 34653  joinHcdjh 34700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-djh 34701
This theorem is referenced by:  djhval  34704
  Copyright terms: Public domain W3C validator