Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhffval Structured version   Unicode version

Theorem djhffval 36193
Description: Subspace join for  DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypothesis
Ref Expression
djhval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
djhffval  |-  ( K  e.  X  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
Distinct variable groups:    w, H    x, w, y, K
Allowed substitution hints:    H( x, y)    X( x, y, w)

Proof of Theorem djhffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3122 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5864 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 djhval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2526 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5864 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5866 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 5868 . . . . . 6  |-  ( k  =  K  ->  ( Base `  ( ( DVecH `  k ) `  w
) )  =  (
Base `  ( ( DVecH `  K ) `  w ) ) )
87pweqd 4015 . . . . 5  |-  ( k  =  K  ->  ~P ( Base `  ( ( DVecH `  k ) `  w ) )  =  ~P ( Base `  (
( DVecH `  K ) `  w ) ) )
9 fveq2 5864 . . . . . . 7  |-  ( k  =  K  ->  ( ocH `  k )  =  ( ocH `  K
) )
109fveq1d 5866 . . . . . 6  |-  ( k  =  K  ->  (
( ocH `  k
) `  w )  =  ( ( ocH `  K ) `  w
) )
1110fveq1d 5866 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  x )  =  ( ( ( ocH `  K
) `  w ) `  x ) )
1210fveq1d 5866 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  y )  =  ( ( ( ocH `  K
) `  w ) `  y ) )
1311, 12ineq12d 3701 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( ocH `  k ) `  w
) `  x )  i^i  ( ( ( ocH `  k ) `  w
) `  y )
)  =  ( ( ( ( ocH `  K
) `  w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) )
1410, 13fveq12d 5870 . . . . 5  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) )  =  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) )
158, 8, 14mpt2eq123dv 6341 . . . 4  |-  ( k  =  K  ->  (
x  e.  ~P ( Base `  ( ( DVecH `  k ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( ( ( ocH `  k ) `
 w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) )  =  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )
164, 15mpteq12dv 4525 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) )  |->  ( ( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
17 df-djh 36192 . . 3  |- joinH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) )  |->  ( ( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) ) ) )
18 fvex 5874 . . . . 5  |-  ( LHyp `  K )  e.  _V
193, 18eqeltri 2551 . . . 4  |-  H  e. 
_V
2019mptex 6129 . . 3  |-  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )  e.  _V
2116, 17, 20fvmpt 5948 . 2  |-  ( K  e.  _V  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
221, 21syl 16 1  |-  ( K  e.  X  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475   ~Pcpw 4010    |-> cmpt 4505   ` cfv 5586    |-> cmpt2 6284   Basecbs 14486   LHypclh 34780   DVecHcdvh 35875   ocHcoch 36144  joinHcdjh 36191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-oprab 6286  df-mpt2 6287  df-djh 36192
This theorem is referenced by:  djhfval  36194
  Copyright terms: Public domain W3C validator