Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhffval Structured version   Unicode version

Theorem djhffval 35364
Description: Subspace join for  DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypothesis
Ref Expression
djhval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
djhffval  |-  ( K  e.  X  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
Distinct variable groups:    w, H    x, w, y, K
Allowed substitution hints:    H( x, y)    X( x, y, w)

Proof of Theorem djhffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3085 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5798 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 djhval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2513 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5798 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5800 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 5802 . . . . . 6  |-  ( k  =  K  ->  ( Base `  ( ( DVecH `  k ) `  w
) )  =  (
Base `  ( ( DVecH `  K ) `  w ) ) )
87pweqd 3972 . . . . 5  |-  ( k  =  K  ->  ~P ( Base `  ( ( DVecH `  k ) `  w ) )  =  ~P ( Base `  (
( DVecH `  K ) `  w ) ) )
9 fveq2 5798 . . . . . . 7  |-  ( k  =  K  ->  ( ocH `  k )  =  ( ocH `  K
) )
109fveq1d 5800 . . . . . 6  |-  ( k  =  K  ->  (
( ocH `  k
) `  w )  =  ( ( ocH `  K ) `  w
) )
1110fveq1d 5800 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  x )  =  ( ( ( ocH `  K
) `  w ) `  x ) )
1210fveq1d 5800 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  y )  =  ( ( ( ocH `  K
) `  w ) `  y ) )
1311, 12ineq12d 3660 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( ocH `  k ) `  w
) `  x )  i^i  ( ( ( ocH `  k ) `  w
) `  y )
)  =  ( ( ( ( ocH `  K
) `  w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) )
1410, 13fveq12d 5804 . . . . 5  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) )  =  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) )
158, 8, 14mpt2eq123dv 6256 . . . 4  |-  ( k  =  K  ->  (
x  e.  ~P ( Base `  ( ( DVecH `  k ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( ( ( ocH `  k ) `
 w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) )  =  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )
164, 15mpteq12dv 4477 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) )  |->  ( ( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
17 df-djh 35363 . . 3  |- joinH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) )  |->  ( ( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) ) ) )
18 fvex 5808 . . . . 5  |-  ( LHyp `  K )  e.  _V
193, 18eqeltri 2538 . . . 4  |-  H  e. 
_V
2019mptex 6056 . . 3  |-  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
) ,  y  e. 
~P ( Base `  (
( DVecH `  K ) `  w ) )  |->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) )  e.  _V
2116, 17, 20fvmpt 5882 . 2  |-  ( K  e.  _V  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
221, 21syl 16 1  |-  ( K  e.  X  ->  (joinH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( ( ocH `  K ) `
 w ) `  ( ( ( ( ocH `  K ) `
 w ) `  x )  i^i  (
( ( ocH `  K
) `  w ) `  y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   _Vcvv 3076    i^i cin 3434   ~Pcpw 3967    |-> cmpt 4457   ` cfv 5525    |-> cmpt2 6201   Basecbs 14291   LHypclh 33951   DVecHcdvh 35046   ocHcoch 35315  joinHcdjh 35362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pr 4638
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-oprab 6203  df-mpt2 6204  df-djh 35363
This theorem is referenced by:  djhfval  35365
  Copyright terms: Public domain W3C validator