Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djajN Structured version   Unicode version

Theorem djajN 35952
Description: Transfer lattice join to  DVecA partial vector space closed subspace join. Part of Lemma M of [Crawley] p. 120 line 29, with closed subspace join rather than subspace sum. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaj.k  |-  .\/  =  ( join `  K )
djaj.h  |-  H  =  ( LHyp `  K
)
djaj.i  |-  I  =  ( ( DIsoA `  K
) `  W )
djaj.j  |-  J  =  ( ( vA `  K ) `  W
)
Assertion
Ref Expression
djajN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )

Proof of Theorem djajN
StepHypRef Expression
1 hllat 34178 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
21ad2antrr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  Lat )
3 hlop 34177 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OP )
43ad2antrr 725 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OP )
5 eqid 2467 . . . . . . . . . 10  |-  ( Base `  K )  =  (
Base `  K )
6 djaj.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 djaj.i . . . . . . . . . 10  |-  I  =  ( ( DIsoA `  K
) `  W )
85, 6, 7diadmclN 35852 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X  e.  ( Base `  K
) )
98adantrr 716 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X  e.  (
Base `  K )
)
10 eqid 2467 . . . . . . . . 9  |-  ( oc
`  K )  =  ( oc `  K
)
115, 10opoccl 34009 . . . . . . . 8  |-  ( ( K  e.  OP  /\  X  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  X
)  e.  ( Base `  K ) )
124, 9, 11syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  e.  (
Base `  K )
)
135, 6lhpbase 34812 . . . . . . . . 9  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1413ad2antlr 726 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  W  e.  (
Base `  K )
)
155, 10opoccl 34009 . . . . . . . 8  |-  ( ( K  e.  OP  /\  W  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  W
)  e.  ( Base `  K ) )
164, 14, 15syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  W )  e.  (
Base `  K )
)
17 djaj.k . . . . . . . 8  |-  .\/  =  ( join `  K )
185, 17latjcl 15538 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
192, 12, 16, 18syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
20 eqid 2467 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
215, 20latmcl 15539 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
222, 19, 14, 21syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
235, 6, 7diadmclN 35852 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y  e.  ( Base `  K
) )
2423adantrl 715 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y  e.  (
Base `  K )
)
255, 10opoccl 34009 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  ( Base `  K ) )  -> 
( ( oc `  K ) `  Y
)  e.  ( Base `  K ) )
264, 24, 25syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  e.  (
Base `  K )
)
275, 17latjcl 15538 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  Y
)  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
) )  ->  (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) )  e.  ( Base `  K
) )
282, 26, 16, 27syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )
)
295, 20latmcl 15539 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
) )
302, 28, 14, 29syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
) )
315, 20latmcl 15539 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K ) )
322, 22, 30, 31syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
33 eqid 2467 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
345, 33, 20latmle2 15564 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  (
Base `  K )
)  ->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )
352, 22, 30, 34syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )
365, 33, 20latmle2 15564 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
372, 28, 14, 36syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
385, 33, 2, 32, 30, 14, 35, 37lattrd 15545 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ( le `  K ) W )
395, 33, 6, 7diaeldm 35851 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I  <->  ( (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4039adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  dom  I  <->  ( ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  e.  ( Base `  K )  /\  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ( le `  K ) W ) ) )
4132, 38, 40mpbir2and 920 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )
42 eqid 2467 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
43 eqid 2467 . . . 4  |-  ( ( ocA `  K ) `
 W )  =  ( ( ocA `  K
) `  W )
4417, 20, 10, 6, 42, 7, 43diaocN 35940 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  e. 
dom  I )  -> 
( I `  (
( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  =  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
4541, 44syldan 470 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
46 hloml 34172 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OML )
4746ad2antrr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OML )
485, 17latjcl 15538 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  .\/  Y )  e.  ( Base `  K
) )
492, 9, 24, 48syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  e.  ( Base `  K ) )
5033, 6, 7diadmleN 35853 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  X
( le `  K
) W )
5150adantrr 716 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  X ( le
`  K ) W )
5233, 6, 7diadmleN 35853 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  Y
( le `  K
) W )
5352adantrl 715 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  Y ( le
`  K ) W )
545, 33, 17latjle12 15549 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( X ( le `  K ) W  /\  Y ( le `  K ) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
552, 9, 24, 14, 54syl13anc 1230 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X ( le `  K
) W  /\  Y
( le `  K
) W )  <->  ( X  .\/  Y ) ( le
`  K ) W ) )
5651, 53, 55mpbi2and 919 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y ) ( le `  K ) W )
575, 33, 17, 20, 10omlspjN 34076 . . . . 5  |-  ( ( K  e.  OML  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  ( X  .\/  Y ) ( le `  K ) W )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) ( meet `  K
) W )  =  ( X  .\/  Y
) )
5847, 49, 14, 56, 57syl121anc 1233 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( X  .\/  Y ) )
595, 17latjidm 15561 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  ( Base `  K ) )  -> 
( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
)  =  ( ( oc `  K ) `
 W ) )
602, 16, 59syl2anc 661 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 W )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  W )
)
6160oveq2d 6300 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( X  .\/  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
625, 17latjass 15582 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  e.  ( Base `  K )  /\  (
( oc `  K
) `  W )  e.  ( Base `  K
)  /\  ( ( oc `  K ) `  W )  e.  (
Base `  K )
) )  ->  (
( ( X  .\/  Y )  .\/  ( ( oc `  K ) `
 W ) ) 
.\/  ( ( oc
`  K ) `  W ) )  =  ( ( X  .\/  Y )  .\/  ( ( ( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
632, 49, 16, 16, 62syl13anc 1230 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( X  .\/  Y
)  .\/  ( (
( oc `  K
) `  W )  .\/  ( ( oc `  K ) `  W
) ) ) )
64 hlol 34176 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  OL )
6564ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  K  e.  OL )
665, 17, 20, 10oldmm2 34033 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( X  .\/  Y )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
6765, 49, 14, 66syl3anc 1228 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) ) )
685, 17, 20, 10oldmj1 34036 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X  .\/  Y ) )  =  ( ( ( oc
`  K ) `  X ) ( meet `  K ) ( ( oc `  K ) `
 Y ) ) )
6965, 9, 24, 68syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( oc `  K
) `  X )
( meet `  K )
( ( oc `  K ) `  Y
) ) )
705, 33, 20latleeqm1 15566 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( X ( le `  K ) W  <->  ( X
( meet `  K ) W )  =  X ) )
712, 9, 14, 70syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X ( le `  K ) W  <->  ( X (
meet `  K ) W )  =  X ) )
7251, 71mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X (
meet `  K ) W )  =  X )
7372fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  X ) )
745, 17, 20, 10oldmm1 34032 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  X  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( X
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) )
7565, 9, 14, 74syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) )
7673, 75eqtr3d 2510 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  X )  =  ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) )
775, 33, 20latleeqm1 15566 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  ( Y ( le `  K ) W  <->  ( Y
( meet `  K ) W )  =  Y ) )
782, 24, 14, 77syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y ( le `  K ) W  <->  ( Y (
meet `  K ) W )  =  Y ) )
7953, 78mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( Y (
meet `  K ) W )  =  Y )
8079fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  Y ) )
815, 17, 20, 10oldmm1 34032 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OL  /\  Y  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( Y
( meet `  K ) W ) )  =  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) )
8265, 24, 14, 81syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( Y ( meet `  K
) W ) )  =  ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) )
8380, 82eqtr3d 2510 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  Y )  =  ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) )
8476, 83oveq12d 6302 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 X ) (
meet `  K )
( ( oc `  K ) `  Y
) )  =  ( ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ) )
8569, 84eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( X  .\/  Y ) )  =  ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) )
8685oveq1d 6299 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W ) )
875, 20latmmdir 34050 . . . . . . . . . . . 12  |-  ( ( K  e.  OL  /\  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) )  e.  (
Base `  K )  /\  ( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )
8865, 19, 28, 14, 87syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K )
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
8986, 88eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( oc `  K ) `
 ( X  .\/  Y ) ) ( meet `  K ) W )  =  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( meet `  K ) ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ) )
9089fveq2d 5870 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( X  .\/  Y ) ) ( meet `  K
) W ) )  =  ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9167, 90eqtr3d 2510 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
9291oveq1d 6299 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9363, 92eqtr3d 2510 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( ( oc
`  K ) `  W )  .\/  (
( oc `  K
) `  W )
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9461, 93eqtr3d 2510 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( X 
.\/  Y )  .\/  ( ( oc `  K ) `  W
) )  =  ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) )
9594oveq1d 6299 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( X  .\/  Y ) 
.\/  ( ( oc
`  K ) `  W ) ) (
meet `  K ) W )  =  ( ( ( ( oc
`  K ) `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9658, 95eqtr3d 2510 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( X  .\/  Y )  =  ( ( ( ( oc `  K ) `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )
9796fveq2d 5870 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( I `
 ( ( ( ( oc `  K
) `  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) (
meet `  K )
( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ) )
98 simpl 457 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
996, 7diaclN 35865 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  X )  e.  ran  I )
10099adantrr 716 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  e.  ran  I )
1016, 42, 7diaelrnN 35860 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  X )  e.  ran  I )  ->  (
I `  X )  C_  ( ( LTrn `  K
) `  W )
)
102100, 101syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  X )  C_  (
( LTrn `  K ) `  W ) )
1036, 7diaclN 35865 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  Y )  e.  ran  I )
104103adantrl 715 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  e.  ran  I )
1056, 42, 7diaelrnN 35860 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( I `  Y )  e.  ran  I )  ->  (
I `  Y )  C_  ( ( LTrn `  K
) `  W )
)
106104, 105syldan 470 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  Y )  C_  (
( LTrn `  K ) `  W ) )
107 djaj.j . . . . 5  |-  J  =  ( ( vA `  K ) `  W
)
1086, 42, 7, 43, 107djavalN 35950 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( I `
 X )  C_  ( ( LTrn `  K
) `  W )  /\  ( I `  Y
)  C_  ( ( LTrn `  K ) `  W ) ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
10998, 102, 106, 108syl12anc 1226 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( ( ( ( ocA `  K ) `
 W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
1105, 33, 20latmle2 15564 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  ->  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) ( le `  K ) W )
1112, 19, 14, 110syl3anc 1228 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( le `  K
) W )
1125, 33, 6, 7diaeldm 35851 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
113112adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11422, 111, 113mpbir2and 920 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
1155, 33, 6, 7diaeldm 35851 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I  <->  ( (
( ( ( oc
`  K ) `  Y )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
116115adantr 465 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I 
<->  ( ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  ( Base `  K
)  /\  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) ( le
`  K ) W ) ) )
11730, 37, 116mpbir2and 920 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I )
11820, 6, 7diameetN 35871 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( ( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W )  e.  dom  I  /\  ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W )  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
11998, 114, 117, 118syl12anc 1226 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( I `  (
( ( ( oc
`  K ) `  X )  .\/  (
( oc `  K
) `  W )
) ( meet `  K
) W ) )  i^i  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )
12017, 20, 10, 6, 42, 7, 43diaocN 35940 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  X
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  X ) ) )
121120adantrr 716 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  X
) ) )
12217, 20, 10, 6, 42, 7, 43diaocN 35940 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Y  e.  dom  I )  ->  (
I `  ( (
( ( oc `  K ) `  Y
)  .\/  ( ( oc `  K ) `  W ) ) (
meet `  K ) W ) )  =  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) )
123122adantrl 715 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( oc `  K ) `
 Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  Y
) ) )
124121, 123ineq12d 3701 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) )  i^i  ( I `
 ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
125119, 124eqtrd 2508 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( ( ( ( ( oc `  K
) `  X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) )  =  ( ( ( ( ocA `  K ) `  W
) `  ( I `  X ) )  i^i  ( ( ( ocA `  K ) `  W
) `  ( I `  Y ) ) ) )
126125fveq2d 5870 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( ( ocA `  K ) `
 W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) )  =  ( ( ( ocA `  K ) `  W
) `  ( (
( ( ocA `  K
) `  W ) `  ( I `  X
) )  i^i  (
( ( ocA `  K
) `  W ) `  ( I `  Y
) ) ) ) )
127109, 126eqtr4d 2511 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( ( I `
 X ) J ( I `  Y
) )  =  ( ( ( ocA `  K
) `  W ) `  ( I `  (
( ( ( ( oc `  K ) `
 X )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ( meet `  K
) ( ( ( ( oc `  K
) `  Y )  .\/  ( ( oc `  K ) `  W
) ) ( meet `  K ) W ) ) ) ) )
12845, 97, 1273eqtr4d 2518 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e. 
dom  I  /\  Y  e.  dom  I ) )  ->  ( I `  ( X  .\/  Y ) )  =  ( ( I `  X ) J ( I `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    i^i cin 3475    C_ wss 3476   class class class wbr 4447   dom cdm 4999   ran crn 5000   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   occoc 14563   joincjn 15431   meetcmee 15432   Latclat 15532   OPcops 33987   OLcol 33989   OMLcoml 33990   HLchlt 34165   LHypclh 34798   LTrncltrn 34915   DIsoAcdia 35843   ocAcocaN 35934   vAcdjaN 35946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-riotaBAD 33774
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-undef 7002  df-map 7422  df-poset 15433  df-plt 15445  df-lub 15461  df-glb 15462  df-join 15463  df-meet 15464  df-p0 15526  df-p1 15527  df-lat 15533  df-clat 15595  df-oposet 33991  df-cmtN 33992  df-ol 33993  df-oml 33994  df-covers 34081  df-ats 34082  df-atl 34113  df-cvlat 34137  df-hlat 34166  df-llines 34312  df-lplanes 34313  df-lvols 34314  df-lines 34315  df-psubsp 34317  df-pmap 34318  df-padd 34610  df-lhyp 34802  df-laut 34803  df-ldil 34918  df-ltrn 34919  df-trl 34973  df-disoa 35844  df-docaN 35935  df-djaN 35947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator