MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsubdir Structured version   Visualization version   Unicode version

Theorem divsubdir 10330
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
divsubdir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )

Proof of Theorem divsubdir
StepHypRef Expression
1 negcl 9900 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 divdir 10320 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( A  +  -u B )  /  C )  =  ( ( A  /  C )  +  (
-u B  /  C
) ) )
31, 2syl3an2 1310 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  /  C )  +  ( -u B  /  C ) ) )
4 negsub 9947 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
54oveq1d 6329 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
653adant3 1034 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
73, 6eqtr3d 2497 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  -  B
)  /  C ) )
8 divneg 10329 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  -u ( B  /  C )  =  ( -u B  /  C ) )
983expb 1216 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  -u ( B  /  C )  =  ( -u B  /  C ) )
1093adant1 1032 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  -u ( B  /  C
)  =  ( -u B  /  C ) )
1110oveq2d 6330 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  +  ( -u B  /  C ) ) )
12 divcl 10303 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
13123expb 1216 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( A  /  C )  e.  CC )
14133adant2 1033 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A  /  C
)  e.  CC )
15 divcl 10303 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( B  /  C )  e.  CC )
16153expb 1216 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( B  /  C )  e.  CC )
17163adant1 1032 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( B  /  C
)  e.  CC )
1814, 17negsubd 10017 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
1911, 18eqtr3d 2497 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
207, 19eqtr3d 2497 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897    =/= wne 2632  (class class class)co 6314   CCcc 9562   0cc0 9564    + caddc 9567    - cmin 9885   -ucneg 9886    / cdiv 10296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-po 4773  df-so 4774  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297
This theorem is referenced by:  divsubdird  10449  1mhlfehlf  10860  halfpm6th  10862  halfaddsub  10874  zeo  11049  quoremz  12113  quoremnn0ALT  12115  facndiv  12504  bpoly3  14159  cos2bnd  14290  rpnnen2lem3  14317  rpnnen2lem11  14325  pythagtriplem15  14827  ovolscalem1  22514  sinq12gt0  23510  sincos6thpi  23518  ang180lem2  23787  log2cnv  23918  log2tlbnd  23919  basellem3  24057  ppiub  24180  logfacrlim  24200  logexprlim  24201  bposlem8  24267  chtppilimlem1  24359  vmadivsum  24368  rplogsumlem2  24371  rpvmasumlem  24373  rplogsum  24413  mulog2sumlem1  24420  selberg2lem  24436  selberg2  24437  selbergr  24454  pntlemr  24488  pntlemj  24489  ballotth  29418  ballotthOLD  29456  subdivcomb1  30408  subdivcomb2  30409  nndivsub  31165  heiborlem6  32192  areaquad  36145  lhe4.4ex1a  36721  stirlinglem10  37982  divsub1dir  40586
  Copyright terms: Public domain W3C validator