MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsubdir Structured version   Unicode version

Theorem divsubdir 10128
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
divsubdir  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )

Proof of Theorem divsubdir
StepHypRef Expression
1 negcl 9711 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 divdir 10118 . . . 4  |-  ( ( A  e.  CC  /\  -u B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( A  +  -u B )  /  C )  =  ( ( A  /  C )  +  (
-u B  /  C
) ) )
31, 2syl3an2 1253 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  /  C )  +  ( -u B  /  C ) ) )
4 negsub 9758 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  -u B )  =  ( A  -  B ) )
54oveq1d 6205 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
653adant3 1008 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  +  -u B )  /  C
)  =  ( ( A  -  B )  /  C ) )
73, 6eqtr3d 2494 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  -  B
)  /  C ) )
8 divneg 10127 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  -u ( B  /  C )  =  ( -u B  /  C ) )
983expb 1189 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  -u ( B  /  C )  =  ( -u B  /  C ) )
1093adant1 1006 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  -u ( B  /  C
)  =  ( -u B  /  C ) )
1110oveq2d 6206 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  +  ( -u B  /  C ) ) )
12 divcl 10101 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
13123expb 1189 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( A  /  C )  e.  CC )
14133adant2 1007 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( A  /  C
)  e.  CC )
15 divcl 10101 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( B  /  C )  e.  CC )
16153expb 1189 . . . . 5  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( B  /  C )  e.  CC )
17163adant1 1006 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( B  /  C
)  e.  CC )
1814, 17negsubd 9826 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  -u ( B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
1911, 18eqtr3d 2494 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  /  C )  +  (
-u B  /  C
) )  =  ( ( A  /  C
)  -  ( B  /  C ) ) )
207, 19eqtr3d 2494 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( A  -  B )  /  C
)  =  ( ( A  /  C )  -  ( B  /  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644  (class class class)co 6190   CCcc 9381   0cc0 9383    + caddc 9386    - cmin 9696   -ucneg 9697    / cdiv 10094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-po 4739  df-so 4740  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095
This theorem is referenced by:  divsubdird  10247  1mhlfehlf  10645  halfpm6th  10647  halfaddsub  10659  zeo  10828  quoremz  11795  quoremnn0ALT  11797  facndiv  12165  cos2bnd  13574  rpnnen2lem3  13601  rpnnen2lem11  13609  pythagtriplem15  13998  ovolscalem1  21112  sinq12gt0  22085  sincos6thpi  22093  ang180lem2  22322  log2cnv  22455  log2tlbnd  22456  basellem3  22536  ppiub  22659  logfacrlim  22679  logexprlim  22680  bposlem8  22746  chtppilimlem1  22838  vmadivsum  22847  rplogsumlem2  22850  rpvmasumlem  22852  rplogsum  22892  mulog2sumlem1  22899  selberg2lem  22915  selberg2  22916  selbergr  22933  pntlemr  22967  pntlemj  22968  ballotth  27054  subdivcomb1  27518  subdivcomb2  27519  bpoly3  28335  nndivsub  28437  heiborlem6  28853  areaquad  29730  lhe4.4ex1a  29741  stirlinglem10  30016
  Copyright terms: Public domain W3C validator