MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divstgpopn Structured version   Unicode version

Theorem divstgpopn 19712
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
divstgp.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
divstgpopn.x  |-  X  =  ( Base `  G
)
divstgpopn.j  |-  J  =  ( TopOpen `  G )
divstgpopn.k  |-  K  =  ( TopOpen `  H )
divstgpopn.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
divstgpopn  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Distinct variable groups:    x, G    x, J    x, S    x, X    x, H    x, K    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem divstgpopn
Dummy variables  a  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5201 . . . 4  |-  ( F
" S )  C_  ran  F
2 divstgp.h . . . . . . 7  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
32a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( G  /.s  ( G ~QG  Y ) ) )
4 divstgpopn.x . . . . . . 7  |-  X  =  ( Base `  G
)
54a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  X  =  ( Base `  G )
)
6 divstgpopn.f . . . . . 6  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
7 ovex 6137 . . . . . . 7  |-  ( G ~QG  Y )  e.  _V
87a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( G ~QG  Y
)  e.  _V )
9 simp1 988 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  G  e.  TopGrp )
103, 5, 6, 8, 9divslem 14502 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  F : X -onto-> ( X /. ( G ~QG  Y ) ) )
11 forn 5644 . . . . 5  |-  ( F : X -onto-> ( X /. ( G ~QG  Y ) )  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
1210, 11syl 16 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
131, 12syl5sseq 3425 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  C_  ( X /. ( G ~QG  Y ) ) )
14 eceq1 7158 . . . . . . . . . 10  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
1514cbvmptv 4404 . . . . . . . . 9  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
166, 15eqtri 2463 . . . . . . . 8  |-  F  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
1716mptpreima 5352 . . . . . . 7  |-  ( `' F " ( F
" S ) )  =  { y  e.  X  |  [ y ] ( G ~QG  Y )  e.  ( F " S ) }
1817rabeq2i 2990 . . . . . 6  |-  ( y  e.  ( `' F " ( F " S
) )  <->  ( y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F " S ) ) )
196funmpt2 5476 . . . . . . . . 9  |-  Fun  F
20 fvelima 5764 . . . . . . . . 9  |-  ( ( Fun  F  /\  [
y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
2119, 20mpan 670 . . . . . . . 8  |-  ( [ y ] ( G ~QG  Y )  e.  ( F
" S )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
22 divstgpopn.j . . . . . . . . . . . . . . . . . . 19  |-  J  =  ( TopOpen `  G )
2322, 4tgptopon 19675 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
249, 23syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  J  e.  (TopOn `  X ) )
25 simp3 990 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  e.  J )
26 toponss 18556 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  S  e.  J )  ->  S  C_  X )
2724, 25, 26syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  C_  X
)
2827adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  S  C_  X )
2928sselda 3377 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  z  e.  X )
30 eceq1 7158 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
31 ecexg 7126 . . . . . . . . . . . . . . . 16  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
327, 31ax-mp 5 . . . . . . . . . . . . . . 15  |-  [ z ] ( G ~QG  Y )  e.  _V
3330, 6, 32fvmpt 5795 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3429, 33syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3534eqeq1d 2451 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ z ] ( G ~QG  Y )  =  [
y ] ( G ~QG  Y ) ) )
36 eqcom 2445 . . . . . . . . . . . 12  |-  ( [ z ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) )
3735, 36syl6bb 261 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
38 nsgsubg 15734 . . . . . . . . . . . . . . 15  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
39383ad2ant2 1010 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  Y  e.  (SubGrp `  G ) )
4039ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  e.  (SubGrp `  G )
)
41 eqid 2443 . . . . . . . . . . . . . 14  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
424, 41eqger 15752 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  X )
4340, 42syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( G ~QG  Y )  Er  X
)
44 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  y  e.  X )
4543, 44erth 7166 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
469ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  G  e.  TopGrp )
474subgss 15703 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
4840, 47syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  C_  X )
49 eqid 2443 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
50 eqid 2443 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
514, 49, 50, 41eqgval 15751 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  Y  C_  X )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5246, 48, 51syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5337, 45, 523bitr2d 281 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <-> 
( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
54 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  (oppg `  G
)  =  (oppg `  G
)
55 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( +g  `  (oppg
`  G ) )  =  ( +g  `  (oppg `  G
) )
5650, 54, 55oppgplus 15885 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a )  =  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
5756mpteq2i 4396 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
5846adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  TopGrp )
5954oppgtgp 19691 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  (oppg
`  G )  e. 
TopGrp )
6058, 59syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (oppg `  G
)  e.  TopGrp )
6148sselda 3377 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X )
62 eqid 2443 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )
6354, 4oppgbas 15887 . . . . . . . . . . . . . . . . . 18  |-  X  =  ( Base `  (oppg `  G
) )
6454, 22oppgtopn 15889 . . . . . . . . . . . . . . . . . 18  |-  J  =  ( TopOpen `  (oppg
`  G ) )
6562, 63, 55, 64tgplacthmeo 19696 . . . . . . . . . . . . . . . . 17  |-  ( ( (oppg
`  G )  e. 
TopGrp  /\  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)  ->  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  e.  ( J
Homeo J ) )
6660, 61, 65syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ( +g  `  (oppg
`  G ) ) a ) )  e.  ( J Homeo J ) )
6757, 66syl5eqelr 2528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J Homeo J ) )
68 hmeocn 19355 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J Homeo J )  ->  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
6967, 68syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
7025ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  S  e.  J )
71 cnima 18891 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( J  Cn  J )  /\  S  e.  J )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J )
7269, 70, 71syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  e.  J )
7344adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  X )
74 tgpgrp 19671 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
7558, 74syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  Grp )
76 eqid 2443 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  G )  =  ( 0g `  G
)
774, 50, 76, 49grprinv 15606 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
7875, 73, 77syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) )  =  ( 0g `  G ) )
7978oveq1d 6127 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( invg `  G
) `  y )
) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
804, 49grpinvcl 15604 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
8175, 73, 80syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( invg `  G ) `  y
)  e.  X )
8229adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  X )
834, 50grpass 15573 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
8475, 73, 81, 82, 83syl13anc 1220 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( invg `  G
) `  y )
) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
854, 50, 76grplid 15589 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
8675, 82, 85syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( 0g `  G
) ( +g  `  G
) z )  =  z )
8779, 84, 863eqtr3d 2483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  z )
88 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  S )
8987, 88eqeltrd 2517 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S )
90 oveq1 6119 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
9190eleq1d 2509 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  <->  ( y
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S ) )
92 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  =  ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
9392mptpreima 5352 . . . . . . . . . . . . . . 15  |-  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) " S )  =  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S }
9491, 93elrab2 3140 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  <->  ( y  e.  X  /\  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S ) )
9573, 89, 94sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) )
96 ecexg 7126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G ~QG  Y )  e.  _V  ->  [ x ] ( G ~QG  Y )  e.  _V )
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  [ x ] ( G ~QG  Y )  e.  _V
9897, 6fnmpti 5560 . . . . . . . . . . . . . . . . 17  |-  F  Fn  X
9928ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  S  C_  X )
100 fnfvima 5976 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  X  /\  S  C_  X  /\  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) )
1011003expia 1189 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  X  /\  S  C_  X )  -> 
( ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S  ->  ( F `  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( F
" S ) ) )
10298, 99, 101sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) ) )
10375adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  G  e.  Grp )
104 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a  e.  X )
10561adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X )
1064, 50grpcl 15572 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  X )
107103, 104, 105, 106syl3anc 1218 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X )
108 eceq1 7158 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  ->  [ x ] ( G ~QG  Y )  =  [
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ] ( G ~QG  Y ) )
109108, 6, 97fvmpt3i 5799 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X  ->  ( F `  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
110107, 109syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
11143ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( G ~QG  Y )  Er  X
)
1124, 50, 76, 49grplinv 15605 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( ( invg `  G ) `
 a ) ( +g  `  G ) a )  =  ( 0g `  G ) )
113103, 104, 112syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) a )  =  ( 0g `  G
) )
114113oveq1d 6127 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( invg `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( 0g
`  G ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
1154, 49grpinvcl 15604 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( invg `  G ) `  a
)  e.  X )
116103, 104, 115syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( invg `  G ) `  a
)  e.  X )
1174, 50grpass 15573 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 a )  e.  X  /\  a  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  a )
( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
118103, 116, 104, 105, 117syl13anc 1220 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( invg `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
1194, 50, 76grplid 15589 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
120103, 105, 119syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( 0g `  G
) ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
121114, 118, 1203eqtr3d 2483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )
122 simplr 754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )
123121, 122eqeltrd 2517 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y )
12448ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  Y  C_  X )
1254, 49, 50, 41eqgval 15751 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  <->  ( a  e.  X  /\  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X  /\  ( ( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
126103, 124, 125syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  <-> 
( a  e.  X  /\  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  X  /\  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
127104, 107, 123, 126mpbir3and 1171 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a
( G ~QG  Y ) ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
128111, 127erthi 7168 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  [ a ] ( G ~QG  Y )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
129110, 128eqtr4d 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ a ] ( G ~QG  Y ) )
130129eleq1d 2509 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( F `  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( F " S )  <->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
131102, 130sylibd 214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
132131ss2rabdv 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S }  C_  { a  e.  X  |  [
a ] ( G ~QG  Y )  e.  ( F
" S ) } )
133 eceq1 7158 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  [ x ] ( G ~QG  Y )  =  [ a ] ( G ~QG  Y ) )
134133cbvmptv 4404 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
1356, 134eqtri 2463 . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
136135mptpreima 5352 . . . . . . . . . . . . . 14  |-  ( `' F " ( F
" S ) )  =  { a  e.  X  |  [ a ] ( G ~QG  Y )  e.  ( F " S ) }
137132, 93, 1363sstr4g 3418 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) )
138 eleq2 2504 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( y  e.  u  <->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) ) )
139 sseq1 3398 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( u  C_  ( `' F " ( F
" S ) )  <-> 
( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )
140138, 139anbi12d 710 . . . . . . . . . . . . . 14  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) )  <->  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) ) )
141140rspcev 3094 . . . . . . . . . . . . 13  |-  ( ( ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J  /\  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
14272, 95, 137, 141syl12anc 1216 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
1431423ad2antr3 1155 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
144143ex 434 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
)  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14553, 144sylbid 215 . . . . . . . . 9  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
146145rexlimdva 2862 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14721, 146syl5 32 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( [ y ] ( G ~QG  Y )  e.  ( F " S )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
148147expimpd 603 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( (
y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
14918, 148syl5bi 217 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( y  e.  ( `' F "
( F " S
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
150149ralrimiv 2819 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
151 topontop 18553 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
152 eltop2 18602 . . . . 5  |-  ( J  e.  Top  ->  (
( `' F "
( F " S
) )  e.  J  <->  A. y  e.  ( `' F " ( F
" S ) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
15324, 151, 1523syl 20 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( `' F " ( F
" S ) )  e.  J  <->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
154150, 153mpbird 232 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( `' F " ( F " S ) )  e.  J )
155 elqtop3 19298 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ( X /. ( G ~QG  Y ) ) )  ->  ( ( F
" S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15624, 10, 155syl2anc 661 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( F " S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15713, 154, 156mpbir2and 913 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  ( J qTop  F ) )
1583, 5, 6, 8, 9divsval 14501 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( F  "s  G ) )
159 divstgpopn.k . . 3  |-  K  =  ( TopOpen `  H )
160158, 5, 10, 9, 22, 159imastopn 19315 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  K  =  ( J qTop  F )
)
161157, 160eleqtrrd 2520 1  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737   {crab 2740   _Vcvv 2993    C_ wss 3349   class class class wbr 4313    e. cmpt 4371   `'ccnv 4860   ran crn 4862   "cima 4864   Fun wfun 5433    Fn wfn 5434   -onto->wfo 5437   ` cfv 5439  (class class class)co 6112    Er wer 7119   [cec 7120   /.cqs 7121   Basecbs 14195   +g cplusg 14259   TopOpenctopn 14381   0gc0g 14399   qTop cqtop 14462    /.s cqus 14464   Grpcgrp 15431   invgcminusg 15432  SubGrpcsubg 15696  NrmSGrpcnsg 15697   ~QG cqg 15698  oppgcoppg 15881   Topctop 18520  TopOnctopon 18521    Cn ccn 18850   Homeochmeo 19348   TopGrpctgp 19664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-tpos 6766  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-ec 7124  df-qs 7128  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-fz 11459  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-rest 14382  df-topn 14383  df-0g 14401  df-topgen 14403  df-qtop 14466  df-imas 14467  df-divs 14468  df-mnd 15436  df-plusf 15437  df-grp 15566  df-minusg 15567  df-subg 15699  df-nsg 15700  df-eqg 15701  df-oppg 15882  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cn 18853  df-cnp 18854  df-tx 19157  df-hmeo 19350  df-tmd 19665  df-tgp 19666
This theorem is referenced by:  divstgplem  19713
  Copyright terms: Public domain W3C validator