MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsghm Unicode version

Theorem divsghm 14997
Description: If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
divsghm.x  |-  X  =  ( Base `  G
)
divsghm.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
divsghm.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
divsghm  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, G    x, H    x, X    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem divsghm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divsghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2404 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2404 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2404 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 nsgsubg 14927 . . 3  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
6 subgrcl 14904 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
75, 6syl 16 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
8 divsghm.h . . 3  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
98divsgrp 14950 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
108, 1, 2divseccl 14951 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  x  e.  X )  ->  [ x ] ( G ~QG  Y )  e.  ( Base `  H
) )
11 divsghm.f . . 3  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
1210, 11fmptd 5852 . 2  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F : X
--> ( Base `  H
) )
138, 1, 3, 4divsadd 14952 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  y  e.  X  /\  z  e.  X
)  ->  ( [
y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G ) z ) ] ( G ~QG  Y ) )
14133expb 1154 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( [ y ] ( G ~QG  Y ) ( +g  `  H ) [ z ] ( G ~QG  Y ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
15 eceq1 6900 . . . . . 6  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
16 ovex 6065 . . . . . . 7  |-  ( G ~QG  Y )  e.  _V
17 ecexg 6868 . . . . . . 7  |-  ( ( G ~QG  Y )  e.  _V  ->  [ x ] ( G ~QG  Y )  e.  _V )
1816, 17ax-mp 8 . . . . . 6  |-  [ x ] ( G ~QG  Y )  e.  _V
1915, 11, 18fvmpt3i 5768 . . . . 5  |-  ( y  e.  X  ->  ( F `  y )  =  [ y ] ( G ~QG  Y ) )
2019ad2antrl 709 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  y
)  =  [ y ] ( G ~QG  Y ) )
21 eceq1 6900 . . . . . 6  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
2221, 11, 18fvmpt3i 5768 . . . . 5  |-  ( z  e.  X  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
2322ad2antll 710 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  z
)  =  [ z ] ( G ~QG  Y ) )
2420, 23oveq12d 6058 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( F `  y ) ( +g  `  H ) ( F `
 z ) )  =  ( [ y ] ( G ~QG  Y ) ( +g  `  H
) [ z ] ( G ~QG  Y ) ) )
251, 3grpcl 14773 . . . . . 6  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
26253expb 1154 . . . . 5  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
277, 26sylan 458 . . . 4  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y ( +g  `  G ) z )  e.  X )
28 eceq1 6900 . . . . 5  |-  ( x  =  ( y ( +g  `  G ) z )  ->  [ x ] ( G ~QG  Y )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
2928, 11, 18fvmpt3i 5768 . . . 4  |-  ( ( y ( +g  `  G
) z )  e.  X  ->  ( F `  ( y ( +g  `  G ) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3027, 29syl 16 . . 3  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  [ ( y ( +g  `  G
) z ) ] ( G ~QG  Y ) )
3114, 24, 303eqtr4rd 2447 . 2  |-  ( ( Y  e.  (NrmSGrp `  G
)  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( F `  (
y ( +g  `  G
) z ) )  =  ( ( F `
 y ) ( +g  `  H ) ( F `  z
) ) )
321, 2, 3, 4, 7, 9, 12, 31isghmd 14970 1  |-  ( Y  e.  (NrmSGrp `  G
)  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   [cec 6862   Basecbs 13424   +g cplusg 13484    /.s cqus 13686   Grpcgrp 14640  SubGrpcsubg 14893  NrmSGrpcnsg 14894   ~QG cqg 14895    GrpHom cghm 14958
This theorem is referenced by:  divsrhm  16263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-0g 13682  df-imas 13689  df-divs 13690  df-mnd 14645  df-grp 14767  df-minusg 14768  df-subg 14896  df-nsg 14897  df-eqg 14898  df-ghm 14959
  Copyright terms: Public domain W3C validator