Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Visualization version   Unicode version

Theorem divrngidl 32262
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1  |-  G  =  ( 1st `  R
)
divrngidl.2  |-  H  =  ( 2nd `  R
)
divrngidl.3  |-  X  =  ran  G
divrngidl.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
divrngidl  |-  ( R  e.  DivRingOps  ->  ( Idl `  R
)  =  { { Z } ,  X }
)

Proof of Theorem divrngidl
Dummy variables  i  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3  |-  G  =  ( 1st `  R
)
2 divrngidl.2 . . 3  |-  H  =  ( 2nd `  R
)
3 divrngidl.4 . . 3  |-  Z  =  (GId `  G )
4 divrngidl.3 . . 3  |-  X  =  ran  G
5 eqid 2451 . . 3  |-  (GId `  H )  =  (GId
`  H )
61, 2, 3, 4, 5isdrngo2 32198 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( (GId `  H )  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
) ) )
71, 3idl0cl 32252 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  Z  e.  i )
87adantr 471 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  Z  e.  i )
9 fvex 5857 . . . . . . . . . . . . . 14  |-  (GId `  G )  e.  _V
103, 9eqeltri 2525 . . . . . . . . . . . . 13  |-  Z  e. 
_V
1110snss 4064 . . . . . . . . . . . 12  |-  ( Z  e.  i  <->  { Z }  C_  i )
12 necom 2676 . . . . . . . . . . . 12  |-  ( i  =/=  { Z }  <->  { Z }  =/=  i
)
13 pssdifn0 3794 . . . . . . . . . . . . 13  |-  ( ( { Z }  C_  i  /\  { Z }  =/=  i )  ->  (
i  \  { Z } )  =/=  (/) )
14 n0 3708 . . . . . . . . . . . . 13  |-  ( ( i  \  { Z } )  =/=  (/)  <->  E. z 
z  e.  ( i 
\  { Z }
) )
1513, 14sylib 201 . . . . . . . . . . . 12  |-  ( ( { Z }  C_  i  /\  { Z }  =/=  i )  ->  E. z 
z  e.  ( i 
\  { Z }
) )
1611, 12, 15syl2anb 486 . . . . . . . . . . 11  |-  ( ( Z  e.  i  /\  i  =/=  { Z }
)  ->  E. z 
z  e.  ( i 
\  { Z }
) )
171, 4idlss 32250 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  i  C_  X )
18 ssdif 3535 . . . . . . . . . . . . . . . . . 18  |-  ( i 
C_  X  ->  (
i  \  { Z } )  C_  ( X  \  { Z }
) )
1918sselda 3399 . . . . . . . . . . . . . . . . 17  |-  ( ( i  C_  X  /\  z  e.  ( i  \  { Z } ) )  ->  z  e.  ( X  \  { Z } ) )
2017, 19sylan 478 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  ->  z  e.  ( X  \  { Z } ) )
21 oveq2 6283 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
y H x )  =  ( y H z ) )
2221eqeq1d 2453 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( y H x )  =  (GId `  H )  <->  ( y H z )  =  (GId `  H )
) )
2322rexbidv 2872 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  ( E. y  e.  ( X  \  { Z }
) ( y H x )  =  (GId
`  H )  <->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
) )
2423rspcva 3115 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( X 
\  { Z }
)  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
)
2520, 24sylan 478 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )
)
26 eldifi 3522 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( i  \  { Z } )  -> 
z  e.  i )
27 eldifi 3522 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( X  \  { Z } )  -> 
y  e.  X )
2826, 27anim12i 574 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ( i 
\  { Z }
)  /\  y  e.  ( X  \  { Z } ) )  -> 
( z  e.  i  /\  y  e.  X
) )
291, 2, 4idllmulcl 32254 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
y H z )  e.  i )
301, 2, 4, 51idl 32260 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (
(GId `  H )  e.  i  <->  i  =  X ) )
3130biimpd 212 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R
) )  ->  (
(GId `  H )  e.  i  ->  i  =  X ) )
3231adantr 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
(GId `  H )  e.  i  ->  i  =  X ) )
33 eleq1 2517 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y H z )  =  (GId `  H
)  ->  ( (
y H z )  e.  i  <->  (GId `  H
)  e.  i ) )
3433imbi1d 323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y H z )  =  (GId `  H
)  ->  ( (
( y H z )  e.  i  -> 
i  =  X )  <-> 
( (GId `  H
)  e.  i  -> 
i  =  X ) ) )
3532, 34syl5ibrcom 230 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
( y H z )  =  (GId `  H )  ->  (
( y H z )  e.  i  -> 
i  =  X ) ) )
3629, 35mpid 42 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  i  /\  y  e.  X
) )  ->  (
( y H z )  =  (GId `  H )  ->  i  =  X ) )
3728, 36sylan2 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  ( z  e.  ( i  \  { Z } )  /\  y  e.  ( X  \  { Z } ) ) )  ->  ( ( y H z )  =  (GId `  H )  ->  i  =  X ) )
3837anassrs 658 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  y  e.  ( X  \  { Z } ) )  ->  ( (
y H z )  =  (GId `  H
)  ->  i  =  X ) )
3938rexlimdva 2851 . . . . . . . . . . . . . . . 16  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H z )  =  (GId `  H )  ->  i  =  X ) )
4039imp 435 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  E. y  e.  ( X 
\  { Z }
) ( y H z )  =  (GId
`  H ) )  ->  i  =  X )
4125, 40syldan 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  z  e.  ( i  \  { Z } ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  i  =  X )
4241an32s 818 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  RingOps 
/\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  z  e.  ( i  \  { Z } ) )  -> 
i  =  X )
4342ex 440 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( z  e.  ( i  \  { Z } )  ->  i  =  X ) )
4443exlimdv 1782 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( E. z  z  e.  (
i  \  { Z } )  ->  i  =  X ) )
4516, 44syl5 33 . . . . . . . . . 10  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( ( Z  e.  i  /\  i  =/=  { Z }
)  ->  i  =  X ) )
468, 45mpand 686 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  i  e.  ( Idl `  R ) )  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  =/=  { Z }  ->  i  =  X ) )
4746an32s 818 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  i  e.  ( Idl `  R ) )  ->  ( i  =/=  { Z }  ->  i  =  X ) )
48 neor 2714 . . . . . . . 8  |-  ( ( i  =  { Z }  \/  i  =  X )  <->  ( i  =/=  { Z }  ->  i  =  X ) )
4947, 48sylibr 217 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  A. x  e.  ( X 
\  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  /\  i  e.  ( Idl `  R ) )  ->  ( i  =  { Z }  \/  i  =  X )
)
5049ex 440 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  ->  ( i  =  { Z }  \/  i  =  X )
) )
511, 30idl 32259 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
52 eleq1 2517 . . . . . . . . 9  |-  ( i  =  { Z }  ->  ( i  e.  ( Idl `  R )  <->  { Z }  e.  ( Idl `  R ) ) )
5351, 52syl5ibrcom 230 . . . . . . . 8  |-  ( R  e.  RingOps  ->  ( i  =  { Z }  ->  i  e.  ( Idl `  R
) ) )
541, 4rngoidl 32258 . . . . . . . . 9  |-  ( R  e.  RingOps  ->  X  e.  ( Idl `  R ) )
55 eleq1 2517 . . . . . . . . 9  |-  ( i  =  X  ->  (
i  e.  ( Idl `  R )  <->  X  e.  ( Idl `  R ) ) )
5654, 55syl5ibrcom 230 . . . . . . . 8  |-  ( R  e.  RingOps  ->  ( i  =  X  ->  i  e.  ( Idl `  R ) ) )
5753, 56jaod 386 . . . . . . 7  |-  ( R  e.  RingOps  ->  ( ( i  =  { Z }  \/  i  =  X
)  ->  i  e.  ( Idl `  R ) ) )
5857adantr 471 . . . . . 6  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( (
i  =  { Z }  \/  i  =  X )  ->  i  e.  ( Idl `  R
) ) )
5950, 58impbid 195 . . . . 5  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  <->  ( i  =  { Z }  \/  i  =  X )
) )
60 vex 3015 . . . . . 6  |-  i  e. 
_V
6160elpr 3953 . . . . 5  |-  ( i  e.  { { Z } ,  X }  <->  ( i  =  { Z }  \/  i  =  X ) )
6259, 61syl6bbr 271 . . . 4  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( i  e.  ( Idl `  R
)  <->  i  e.  { { Z } ,  X } ) )
6362eqrdv 2449 . . 3  |-  ( ( R  e.  RingOps  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
)  ->  ( Idl `  R )  =  { { Z } ,  X } )
6463adantrl 727 . 2  |-  ( ( R  e.  RingOps  /\  (
(GId `  H )  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  (GId `  H )
) )  ->  ( Idl `  R )  =  { { Z } ,  X } )
656, 64sylbi 200 1  |-  ( R  e.  DivRingOps  ->  ( Idl `  R
)  =  { { Z } ,  X }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 374    /\ wa 375    = wceq 1447   E.wex 1666    e. wcel 1890    =/= wne 2621   A.wral 2736   E.wrex 2737   _Vcvv 3012    \ cdif 3368    C_ wss 3371   (/)c0 3698   {csn 3935   {cpr 3937   ran crn 4812   ` cfv 5560  (class class class)co 6275   1stc1st 6778   2ndc2nd 6779  GIdcgi 25926   RingOpscrngo 26114   DivRingOpscdrng 26144   Idlcidl 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1672  ax-4 1685  ax-5 1761  ax-6 1808  ax-7 1854  ax-8 1892  ax-9 1899  ax-10 1918  ax-11 1923  ax-12 1936  ax-13 2091  ax-ext 2431  ax-rep 4486  ax-sep 4496  ax-nul 4505  ax-pow 4553  ax-pr 4611  ax-un 6570
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1450  df-ex 1667  df-nf 1671  df-sb 1801  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3014  df-sbc 3235  df-csb 3331  df-dif 3374  df-un 3376  df-in 3378  df-ss 3385  df-pss 3387  df-nul 3699  df-if 3849  df-pw 3920  df-sn 3936  df-pr 3938  df-tp 3940  df-op 3942  df-uni 4168  df-iun 4249  df-br 4374  df-opab 4433  df-mpt 4434  df-tr 4469  df-eprel 4722  df-id 4726  df-po 4732  df-so 4733  df-fr 4770  df-we 4772  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-ord 5404  df-on 5405  df-lim 5406  df-suc 5407  df-iota 5524  df-fun 5562  df-fn 5563  df-f 5564  df-f1 5565  df-fo 5566  df-f1o 5567  df-fv 5568  df-riota 6237  df-ov 6278  df-om 6680  df-1st 6780  df-2nd 6781  df-1o 7168  df-er 7349  df-en 7556  df-dom 7557  df-sdom 7558  df-fin 7559  df-grpo 25930  df-gid 25931  df-ginv 25932  df-ablo 26021  df-ass 26052  df-exid 26054  df-mgmOLD 26058  df-sgrOLD 26070  df-mndo 26077  df-rngo 26115  df-drngo 26145  df-idl 32244
This theorem is referenced by:  divrngpr  32287  isfldidl  32302
  Copyright terms: Public domain W3C validator