Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngcl Structured version   Unicode version

Theorem divrngcl 31642
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1  |-  G  =  ( 1st `  R
)
isdivrng1.2  |-  H  =  ( 2nd `  R
)
isdivrng1.3  |-  Z  =  (GId `  G )
isdivrng1.4  |-  X  =  ran  G
Assertion
Ref Expression
divrngcl  |-  ( ( R  e.  DivRingOps  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )

Proof of Theorem divrngcl
StepHypRef Expression
1 isdivrng1.1 . . 3  |-  G  =  ( 1st `  R
)
2 isdivrng1.2 . . 3  |-  H  =  ( 2nd `  R
)
3 isdivrng1.3 . . 3  |-  Z  =  (GId `  G )
4 isdivrng1.4 . . 3  |-  X  =  ran  G
51, 2, 3, 4isdrngo1 31641 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
6 ovres 6423 . . . . 5  |-  ( ( A  e.  ( X 
\  { Z }
)  /\  B  e.  ( X  \  { Z } ) )  -> 
( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  =  ( A H B ) )
76adantl 464 . . . 4  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  =  ( A H B ) )
8 eqid 2402 . . . . . . . . 9  |-  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
98grpocl 25616 . . . . . . . 8  |-  ( ( ( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp  /\  A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  ->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) )
1093expib 1200 . . . . . . 7  |-  ( ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp  ->  ( ( A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) ) )
1110adantl 464 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  ->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) ) )
12 grporndm 25626 . . . . . . . . . 10  |-  ( ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp  ->  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  dom  dom  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) )
1312adantl 464 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )
14 difss 3570 . . . . . . . . . . . . . . 15  |-  ( X 
\  { Z }
)  C_  X
15 xpss12 4929 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  { Z } )  C_  X  /\  ( X  \  { Z } )  C_  X
)  ->  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) )  C_  ( X  X.  X ) )
1614, 14, 15mp2an 670 . . . . . . . . . . . . . 14  |-  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) )  C_  ( X  X.  X )
171, 2, 4rngosm 25797 . . . . . . . . . . . . . . 15  |-  ( R  e.  RingOps  ->  H : ( X  X.  X ) --> X )
18 fdm 5718 . . . . . . . . . . . . . . 15  |-  ( H : ( X  X.  X ) --> X  ->  dom  H  =  ( X  X.  X ) )
1917, 18syl 17 . . . . . . . . . . . . . 14  |-  ( R  e.  RingOps  ->  dom  H  =  ( X  X.  X
) )
2016, 19syl5sseqr 3491 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) )  C_  dom  H )
21 ssdmres 5115 . . . . . . . . . . . . 13  |-  ( ( ( X  \  { Z } )  X.  ( X  \  { Z }
) )  C_  dom  H  <->  dom  ( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
2220, 21sylib 196 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )
2322adantr 463 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
2423dmeqd 5026 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  dom  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )
25 dmxpid 5043 . . . . . . . . . 10  |-  dom  (
( X  \  { Z } )  X.  ( X  \  { Z }
) )  =  ( X  \  { Z } )
2624, 25syl6eq 2459 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  ( X  \  { Z } ) )
2713, 26eqtrd 2443 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ( X  \  { Z } ) )
2827eleq2d 2472 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  <-> 
A  e.  ( X 
\  { Z }
) ) )
2927eleq2d 2472 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  <-> 
B  e.  ( X 
\  { Z }
) ) )
3028, 29anbi12d 709 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  <->  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) ) )
3127eleq2d 2472 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  <->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ( X 
\  { Z }
) ) )
3211, 30, 313imtr3d 267 . . . . 5  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ( X 
\  { Z }
)  /\  B  e.  ( X  \  { Z } ) )  -> 
( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  e.  ( X  \  { Z } ) ) )
3332imp 427 . . . 4  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  e.  ( X 
\  { Z }
) )
347, 33eqeltrrd 2491 . . 3  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A H B )  e.  ( X  \  { Z } ) )
35343impb 1193 . 2  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )
365, 35syl3an1b 1266 1  |-  ( ( R  e.  DivRingOps  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    \ cdif 3411    C_ wss 3414   {csn 3972    X. cxp 4821   dom cdm 4823   ran crn 4824    |` cres 4825   -->wf 5565   ` cfv 5569  (class class class)co 6278   1stc1st 6782   2ndc2nd 6783   GrpOpcgr 25602  GIdcgi 25603   RingOpscrngo 25791   DivRingOpscdrng 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fo 5575  df-fv 5577  df-ov 6281  df-1st 6784  df-2nd 6785  df-grpo 25607  df-rngo 25792  df-drngo 25822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator