Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngcl Structured version   Unicode version

Theorem divrngcl 28903
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by Jeff Madsen, 9-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1  |-  G  =  ( 1st `  R
)
isdivrng1.2  |-  H  =  ( 2nd `  R
)
isdivrng1.3  |-  Z  =  (GId `  G )
isdivrng1.4  |-  X  =  ran  G
Assertion
Ref Expression
divrngcl  |-  ( ( R  e.  DivRingOps  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )

Proof of Theorem divrngcl
StepHypRef Expression
1 isdivrng1.1 . . 3  |-  G  =  ( 1st `  R
)
2 isdivrng1.2 . . 3  |-  H  =  ( 2nd `  R
)
3 isdivrng1.3 . . 3  |-  Z  =  (GId `  G )
4 isdivrng1.4 . . 3  |-  X  =  ran  G
51, 2, 3, 4isdrngo1 28902 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp ) )
6 ovres 6332 . . . . 5  |-  ( ( A  e.  ( X 
\  { Z }
)  /\  B  e.  ( X  \  { Z } ) )  -> 
( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  =  ( A H B ) )
76adantl 466 . . . 4  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  =  ( A H B ) )
8 eqid 2451 . . . . . . . . 9  |-  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
98grpocl 23824 . . . . . . . 8  |-  ( ( ( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp  /\  A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  ->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) )
1093expib 1191 . . . . . . 7  |-  ( ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp  ->  ( ( A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) ) )
1110adantl 466 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  ->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) ) )
12 grporndm 23834 . . . . . . . . . 10  |-  ( ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp  ->  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  dom  dom  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) ) )
1312adantl 466 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )
14 difss 3583 . . . . . . . . . . . . . . 15  |-  ( X 
\  { Z }
)  C_  X
15 xpss12 5045 . . . . . . . . . . . . . . 15  |-  ( ( ( X  \  { Z } )  C_  X  /\  ( X  \  { Z } )  C_  X
)  ->  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) )  C_  ( X  X.  X ) )
1614, 14, 15mp2an 672 . . . . . . . . . . . . . 14  |-  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) )  C_  ( X  X.  X )
171, 2, 4rngosm 24005 . . . . . . . . . . . . . . 15  |-  ( R  e.  RingOps  ->  H : ( X  X.  X ) --> X )
18 fdm 5663 . . . . . . . . . . . . . . 15  |-  ( H : ( X  X.  X ) --> X  ->  dom  H  =  ( X  X.  X ) )
1917, 18syl 16 . . . . . . . . . . . . . 14  |-  ( R  e.  RingOps  ->  dom  H  =  ( X  X.  X
) )
2016, 19syl5sseqr 3505 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) )  C_  dom  H )
21 ssdmres 5232 . . . . . . . . . . . . 13  |-  ( ( ( X  \  { Z } )  X.  ( X  \  { Z }
) )  C_  dom  H  <->  dom  ( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
2220, 21sylib 196 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  =  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )
2322adantr 465 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )
2423dmeqd 5142 . . . . . . . . . 10  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  dom  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )
25 dmxpid 5159 . . . . . . . . . 10  |-  dom  (
( X  \  { Z } )  X.  ( X  \  { Z }
) )  =  ( X  \  { Z } )
2624, 25syl6eq 2508 . . . . . . . . 9  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  dom  dom  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  =  ( X  \  { Z } ) )
2713, 26eqtrd 2492 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  =  ( X  \  { Z } ) )
2827eleq2d 2521 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( A  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  <-> 
A  e.  ( X 
\  { Z }
) ) )
2927eleq2d 2521 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) )  <-> 
B  e.  ( X 
\  { Z }
) ) )
3028, 29anbi12d 710 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ran  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  /\  B  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) )  <->  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) ) )
3127eleq2d 2521 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  e.  ran  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  <->  ( A
( H  |`  (
( X  \  { Z } )  X.  ( X  \  { Z }
) ) ) B )  e.  ( X 
\  { Z }
) ) )
3211, 30, 313imtr3d 267 . . . . 5  |-  ( ( R  e.  RingOps  /\  ( H  |`  ( ( X 
\  { Z }
)  X.  ( X 
\  { Z }
) ) )  e. 
GrpOp )  ->  ( ( A  e.  ( X 
\  { Z }
)  /\  B  e.  ( X  \  { Z } ) )  -> 
( A ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z } ) ) ) B )  e.  ( X  \  { Z } ) ) )
3332imp 429 . . . 4  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A ( H  |`  ( ( X  \  { Z }
)  X.  ( X 
\  { Z }
) ) ) B )  e.  ( X 
\  { Z }
) )
347, 33eqeltrrd 2540 . . 3  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  ( A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) ) )  ->  ( A H B )  e.  ( X  \  { Z } ) )
35343impb 1184 . 2  |-  ( ( ( R  e.  RingOps  /\  ( H  |`  ( ( X  \  { Z } )  X.  ( X  \  { Z }
) ) )  e. 
GrpOp )  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )
365, 35syl3an1b 1255 1  |-  ( ( R  e.  DivRingOps  /\  A  e.  ( X  \  { Z } )  /\  B  e.  ( X  \  { Z } ) )  -> 
( A H B )  e.  ( X 
\  { Z }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    \ cdif 3425    C_ wss 3428   {csn 3977    X. cxp 4938   dom cdm 4940   ran crn 4941    |` cres 4942   -->wf 5514   ` cfv 5518  (class class class)co 6192   1stc1st 6677   2ndc2nd 6678   GrpOpcgr 23810  GIdcgi 23811   RingOpscrngo 23999   DivRingOpscdrng 24029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-fo 5524  df-fv 5526  df-ov 6195  df-1st 6679  df-2nd 6680  df-grpo 23815  df-rngo 24000  df-drngo 24030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator