MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divrcnv Unicode version

Theorem divrcnv 12587
Description: The sequence of reciprocals of real numbers, multiplied by the factor  A, converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
divrcnv  |-  ( A  e.  CC  ->  (
n  e.  RR+  |->  ( A  /  n ) )  ~~> r  0 )
Distinct variable group:    A, n

Proof of Theorem divrcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 12038 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2 rerpdivcl 10595 . . . . 5  |-  ( ( ( abs `  A
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
31, 2sylan 458 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( abs `  A
)  /  x )  e.  RR )
4 simpll 731 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  A  e.  CC )
5 rpcn 10576 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  n  e.  CC )
65ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  e.  CC )
7 rpne0 10583 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  n  =/=  0 )
87ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  =/=  0
)
94, 6, 8absdivd 12212 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  =  ( ( abs `  A )  /  ( abs `  n ) ) )
10 rpre 10574 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
1110ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  n  e.  RR )
12 rpge0 10580 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_  n )
1312ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <_  n
)
1411, 13absidd 12180 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  n
)  =  n )
1514oveq2d 6056 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  ( abs `  n ) )  =  ( ( abs `  A )  /  n
) )
169, 15eqtrd 2436 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  =  ( ( abs `  A )  /  n
) )
17 simprr 734 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  x
)  <  n )
184abscld 12193 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  A
)  e.  RR )
19 rpre 10574 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e.  RR )
2019ad2antlr 708 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  x  e.  RR )
21 rpgt0 10579 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  < 
x )
2221ad2antlr 708 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <  x
)
23 rpgt0 10579 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  < 
n )
2423ad2antrl 709 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  0  <  n
)
25 ltdiv23 9857 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x )  /\  ( n  e.  RR  /\  0  < 
n ) )  -> 
( ( ( abs `  A )  /  x
)  <  n  <->  ( ( abs `  A )  /  n )  <  x
) )
2618, 20, 22, 11, 24, 25syl122anc 1193 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( ( abs `  A )  /  x )  < 
n  <->  ( ( abs `  A )  /  n
)  <  x )
)
2717, 26mpbid 202 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( ( abs `  A )  /  n
)  <  x )
2816, 27eqbrtrd 4192 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  ( n  e.  RR+  /\  ( ( abs `  A
)  /  x )  <  n ) )  ->  ( abs `  ( A  /  n ) )  <  x )
2928expr 599 . . . . 5  |-  ( ( ( A  e.  CC  /\  x  e.  RR+ )  /\  n  e.  RR+ )  ->  ( ( ( abs `  A )  /  x
)  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
3029ralrimiva 2749 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A. n  e.  RR+  (
( ( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) )
31 breq1 4175 . . . . . . 7  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( y  <  n  <->  ( ( abs `  A )  /  x
)  <  n )
)
3231imbi1d 309 . . . . . 6  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x )  <->  ( (
( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) ) )
3332ralbidv 2686 . . . . 5  |-  ( y  =  ( ( abs `  A )  /  x
)  ->  ( A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  < 
x )  <->  A. n  e.  RR+  ( ( ( abs `  A )  /  x )  < 
n  ->  ( abs `  ( A  /  n
) )  <  x
) ) )
3433rspcev 3012 . . . 4  |-  ( ( ( ( abs `  A
)  /  x )  e.  RR  /\  A. n  e.  RR+  ( ( ( abs `  A
)  /  x )  <  n  ->  ( abs `  ( A  /  n ) )  < 
x ) )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
353, 30, 34syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR  A. n  e.  RR+  (
y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
3635ralrimiva 2749 . 2  |-  ( A  e.  CC  ->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) )
37 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  A  e.  CC )
385adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  n  e.  CC )
397adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  ->  n  =/=  0 )
4037, 38, 39divcld 9746 . . . 4  |-  ( ( A  e.  CC  /\  n  e.  RR+ )  -> 
( A  /  n
)  e.  CC )
4140ralrimiva 2749 . . 3  |-  ( A  e.  CC  ->  A. n  e.  RR+  ( A  /  n )  e.  CC )
42 rpssre 10578 . . . 4  |-  RR+  C_  RR
4342a1i 11 . . 3  |-  ( A  e.  CC  ->  RR+  C_  RR )
4441, 43rlim0lt 12258 . 2  |-  ( A  e.  CC  ->  (
( n  e.  RR+  |->  ( A  /  n
) )  ~~> r  0  <->  A. x  e.  RR+  E. y  e.  RR  A. n  e.  RR+  ( y  <  n  ->  ( abs `  ( A  /  n ) )  <  x ) ) )
4536, 44mpbird 224 1  |-  ( A  e.  CC  ->  (
n  e.  RR+  |->  ( A  /  n ) )  ~~> r  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946    < clt 9076    <_ cle 9077    / cdiv 9633   RR+crp 10568   abscabs 11994    ~~> r crli 12234
This theorem is referenced by:  divcnv  12588  cxp2limlem  20767  logfacrlim  20961  dchrmusumlema  21140  mudivsum  21177  selberg2lem  21197  pntrsumo1  21212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-rlim 12238
  Copyright terms: Public domain W3C validator