MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divnumden Structured version   Unicode version

Theorem divnumden 14157
Description: Calculate the reduced form of a quotient using  gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
2 nnz 10898 . . . . 5  |-  ( B  e.  NN  ->  B  e.  ZZ )
32adantl 466 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
4 nnne0 10580 . . . . . . . 8  |-  ( B  e.  NN  ->  B  =/=  0 )
54neneqd 2669 . . . . . . 7  |-  ( B  e.  NN  ->  -.  B  =  0 )
65adantl 466 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
76intnand 914 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
8 gcdn0cl 14028 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
91, 3, 7, 8syl21anc 1227 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
10 gcddvds 14029 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
112, 10sylan2 474 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
12 gcddiv 14063 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
131, 3, 9, 11, 12syl31anc 1231 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
149nncnd 10564 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
159nnne0d 10592 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
1614, 15dividd 10330 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
1713, 16eqtr3d 2510 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
18 zcn 10881 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  CC )
1918adantr 465 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  CC )
20 nncn 10556 . . . 4  |-  ( B  e.  NN  ->  B  e.  CC )
2120adantl 466 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
224adantl 466 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  =/=  0 )
23 divcan7 10265 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B )  =/=  0 ) )  -> 
( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) )  =  ( A  /  B
) )
2423eqcomd 2475 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 )  /\  ( ( A  gcd  B )  e.  CC  /\  ( A  gcd  B )  =/=  0 ) )  -> 
( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
2519, 21, 22, 14, 15, 24syl122anc 1237 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  =  ( ( A  /  ( A  gcd  B ) )  /  ( B  / 
( A  gcd  B
) ) ) )
26 znq 11198 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B
)  e.  QQ )
2711simpld 459 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
28 gcdcl 14031 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
2928nn0zd 10976 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
302, 29sylan2 474 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
31 dvdsval2 13867 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3230, 15, 1, 31syl3anc 1228 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
3327, 32mpbid 210 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
3411simprd 463 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
35 simpr 461 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  NN )
36 nndivdvds 13870 . . . . 5  |-  ( ( B  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3735, 9, 36syl2anc 661 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  NN ) )
3834, 37mpbid 210 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
39 qnumdenbi 14153 . . 3  |-  ( ( ( A  /  B
)  e.  QQ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4026, 33, 38, 39syl3anc 1228 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1  /\  ( A  /  B )  =  ( ( A  / 
( A  gcd  B
) )  /  ( B  /  ( A  gcd  B ) ) ) )  <-> 
( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) ) )
4117, 25, 40mpbi2and 919 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   0cc0 9504   1c1 9505    / cdiv 10218   NNcn 10548   ZZcz 10876   QQcq 11194    || cdivides 13864    gcd cgcd 14020  numercnumer 14142  denomcdenom 14143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-numer 14144  df-denom 14145
This theorem is referenced by:  divdenle  14158  divnumden2  27432  qqhval2lem  27787
  Copyright terms: Public domain W3C validator