MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divne0d Structured version   Unicode version

Theorem divne0d 10337
Description: The ratio of nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divne0d.3  |-  ( ph  ->  A  =/=  0 )
divne0d.4  |-  ( ph  ->  B  =/=  0 )
Assertion
Ref Expression
divne0d  |-  ( ph  ->  ( A  /  B
)  =/=  0 )

Proof of Theorem divne0d
StepHypRef Expression
1 div1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divne0d.3 . 2  |-  ( ph  ->  A  =/=  0 )
3 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
4 divne0d.4 . 2  |-  ( ph  ->  B  =/=  0 )
5 divne0 10220 . 2  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( B  e.  CC  /\  B  =/=  0 ) )  -> 
( A  /  B
)  =/=  0 )
61, 2, 3, 4, 5syl22anc 1229 1  |-  ( ph  ->  ( A  /  B
)  =/=  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767    =/= wne 2662  (class class class)co 6285   CCcc 9491   0cc0 9493    / cdiv 10207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208
This theorem is referenced by:  tanval3  13733  pcdiv  14238  pcqdiv  14243  sylow1lem1  16433  i1fmulc  21937  itg1mulc  21938  dvcnvlem  22204  plydivlem4  22518  tanarg  22829  logcnlem4  22851  angcld  22962  angrteqvd  22963  cosangneg2d  22964  angrtmuld  22965  ang180lem1  22966  ang180lem2  22967  ang180lem3  22968  ang180lem4  22969  ang180lem5  22970  lawcoslem1  22972  lawcos  22973  isosctrlem2  22978  isosctrlem3  22979  angpieqvdlem2  22985  mcubic  23003  cubic2  23004  cubic  23005  quartlem4  23016  tanatan  23075  qqhval2lem  27713  dmgmdivn0  28321  lgamgulmlem2  28323  gamcvg2lem  28352  ntrivcvgtail  28887  iprodgam  28978  pellexlem6  30601  lcmgcdlem  31039  ioodvbdlimc1lem2  31489  ioodvbdlimc2lem  31491  wallispilem4  31595  stirlinglem1  31601  stirlinglem3  31603  stirlinglem4  31604  stirlinglem7  31607  stirlinglem13  31613  stirlinglem14  31614  stirlinglem15  31615
  Copyright terms: Public domain W3C validator