MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuldiv Structured version   Visualization version   Unicode version

Theorem divmuldiv 10307
Description: Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divmuldiv  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )

Proof of Theorem divmuldiv
StepHypRef Expression
1 3anass 989 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  <->  ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )
2 3anass 989 . . 3  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  <->  ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )
3 divcl 10276 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
4 divcl 10276 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( B  /  D )  e.  CC )
5 mulcl 9623 . . . . . 6  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
63, 4, 5syl2an 480 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  e.  CC )
7 mulcl 9623 . . . . . . . 8  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 753 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
983adantr1 1167 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
1093adantl1 1164 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( C  x.  D )  e.  CC )
11 mulne0 10254 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
12113adantr1 1167 . . . . . 6  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
13123adantl1 1164 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( C  x.  D )  =/=  0
)
14 divcan3 10294 . . . . 5  |-  ( ( ( ( A  /  C )  x.  ( B  /  D ) )  e.  CC  /\  ( C  x.  D )  e.  CC  /\  ( C  x.  D )  =/=  0 )  ->  (
( ( C  x.  D )  x.  (
( A  /  C
)  x.  ( B  /  D ) ) )  /  ( C  x.  D ) )  =  ( ( A  /  C )  x.  ( B  /  D
) ) )
156, 10, 13, 14syl3anc 1268 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) )  / 
( C  x.  D
) )  =  ( ( A  /  C
)  x.  ( B  /  D ) ) )
16 simp2 1009 . . . . . . . 8  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  C  e.  CC )
1716, 3jca 535 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( C  e.  CC  /\  ( A  /  C )  e.  CC ) )
18 simp2 1009 . . . . . . . 8  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  D  e.  CC )
1918, 4jca 535 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )
20 mul4 9802 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  ( A  /  C
)  e.  CC )  /\  ( D  e.  CC  /\  ( B  /  D )  e.  CC ) )  -> 
( ( C  x.  ( A  /  C
) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) ) )
2117, 19, 20syl2an 480 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) ) )
22 divcan2 10278 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( C  x.  ( A  /  C ) )  =  A )
23 divcan2 10278 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( D  x.  ( B  /  D ) )  =  B )
2422, 23oveqan12d 6309 . . . . . 6  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  ( A  /  C ) )  x.  ( D  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2521, 24eqtr3d 2487 . . . . 5  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D ) ) )  =  ( A  x.  B ) )
2625oveq1d 6305 . . . 4  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( ( C  x.  D )  x.  ( ( A  /  C )  x.  ( B  /  D
) ) )  / 
( C  x.  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2715, 26eqtr3d 2487 . . 3  |-  ( ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  /\  ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
281, 2, 27syl2anbr 483 . 2  |-  ( ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  /\  ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
2928an4s 835 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( B  /  D
) )  =  ( ( A  x.  B
)  /  ( C  x.  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622  (class class class)co 6290   CCcc 9537   0cc0 9539    x. cmul 9544    / cdiv 10269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270
This theorem is referenced by:  divdivdiv  10308  divcan5  10309  divmul13  10310  divmul24  10311  divmuldivi  10367  divmuldivd  10424  qmulcl  11282  mulexpz  12312  expaddz  12316  sqdiv  12340  faclbnd2  12476  bcm1k  12500  bcp1n  12501  pythagtriplem16  14780  dvsqrt  23682  dquartlem1  23777  basellem8  24014  dchrvmasumlem1  24333  dchrvmasum2lem  24334  pntlemr  24440  pntlemf  24443  wallispilem4  37930
  Copyright terms: Public domain W3C validator