MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divge0 Structured version   Unicode version

Theorem divge0 10411
Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
Assertion
Ref Expression
divge0  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )

Proof of Theorem divge0
StepHypRef Expression
1 ge0div 10409 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
0  <_  A  <->  0  <_  ( A  /  B ) ) )
21biimpd 207 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
0  <_  A  ->  0  <_  ( A  /  B ) ) )
323exp 1195 . . . 4  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( 0  <  B  -> 
( 0  <_  A  ->  0  <_  ( A  /  B ) ) ) ) )
43com34 83 . . 3  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( 0  <_  A  ->  ( 0  <  B  -> 
0  <_  ( A  /  B ) ) ) ) )
54com23 78 . 2  |-  ( A  e.  RR  ->  (
0  <_  A  ->  ( B  e.  RR  ->  ( 0  <  B  -> 
0  <_  ( A  /  B ) ) ) ) )
65imp43 595 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4447  (class class class)co 6284   RRcr 9491   0cc0 9492    < clt 9628    <_ cle 9629    / cdiv 10206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207
This theorem is referenced by:  mulge0b  10412  ledivp1  10447  divge0i  10455  divge0d  11292  divelunit  11662  fldiv  11955  modid  11988  expnbnd  12263  sqrtdiv  13062  sqreulem  13155  iseralt  13470  efcllem  13675  ege2le3  13687  iserodd  14218  fldivp1  14275  4sqlem14  14335  odmodnn0  16370  prmirredlem  18318  prmirredlemOLD  18321  icopnfcnv  21205  lebnumii  21229  nmoleub2lem3  21361  minveclem4  21610  mbfi1fseqlem1  21885  mbfi1fseqlem5  21889  radcnvlem1  22570  cxpaddle  22882  leibpilem1  23027  log2tlbnd  23032  birthdaylem3  23039  jensenlem2  23073  amgm  23076  basellem3  23112  ppiub  23235  logfac2  23248  chto1ub  23417  vmadivsum  23423  rpvmasumlem  23428  dchrvmasumlem2  23439  dchrvmasumiflem1  23442  dchrisum0fno1  23452  dchrisum0re  23454  mulog2sumlem2  23476  selberg2lem  23491  pntrmax  23505  pntrsumo1  23506  pntpbnd1  23527  ostth2lem2  23575  axpaschlem  23947  axcontlem2  23972  nv1  25283  siii  25472  minvecolem4  25500  norm1  25871  strlem1  26873  unitdivcld  27547  cvmliftlem2  28399  cvmliftlem10  28407  cvmliftlem13  28409  snmlff  28442  pellexlem1  30397  pellexlem6  30402  jm2.22  30569  jm2.23  30570  hashgcdlem  30790  stoweidlem36  31364  stoweidlem38  31366
  Copyright terms: Public domain W3C validator