MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdodd Structured version   Unicode version

Theorem divgcdodd 14115
Description: Either  A  /  ( A  gcd  B ) is odd or  B  /  ( A  gcd  B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
divgcdodd  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )

Proof of Theorem divgcdodd
StepHypRef Expression
1 n2dvds1 13890 . . . 4  |-  -.  2  ||  1
2 nnz 10882 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  ZZ )
3 nnz 10882 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  ZZ )
4 gcddvds 14008 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
52, 3, 4syl2an 477 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
65simpld 459 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  A )
72, 3anim12i 566 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
8 nnne0 10564 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  =/=  0 )
98neneqd 2669 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  -.  A  =  0 )
109intnanrd 915 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  -.  ( A  =  0  /\  B  =  0
) )
1110adantr 465 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
12 gcdn0cl 14007 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
137, 11, 12syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1413nnzd 10961 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  ZZ )
1513nnne0d 10576 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  =/=  0 )
162adantr 465 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  A  e.  ZZ )
17 dvdsval2 13846 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
1814, 15, 16, 17syl3anc 1228 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
196, 18mpbid 210 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
205simprd 463 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  ||  B )
213adantl 466 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  B  e.  ZZ )
22 dvdsval2 13846 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
2314, 15, 21, 22syl3anc 1228 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
2420, 23mpbid 210 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
25 2z 10892 . . . . . . . 8  |-  2  e.  ZZ
26 dvdsgcdb 14037 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  ZZ )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) ) )
2725, 26mp3an1 1311 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  ( B  /  ( A  gcd  B ) )  e.  ZZ )  ->  ( ( 2 
||  ( A  / 
( A  gcd  B
) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) ) )
2819, 24, 27syl2anc 661 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  <->  2  ||  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) ) ) )
29 gcddiv 14042 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
3016, 21, 13, 5, 29syl31anc 1231 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
3113nncnd 10548 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  CC )
3231, 15dividd 10314 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  /  ( A  gcd  B ) )  =  1 )
3330, 32eqtr3d 2510 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
3433breq2d 4459 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  <->  2  ||  1 ) )
3534biimpd 207 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  -> 
2  ||  1 ) )
3628, 35sylbid 215 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  /\  2  ||  ( B  /  ( A  gcd  B ) ) )  -> 
2  ||  1 ) )
3736expdimp 437 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( 2  ||  ( B  /  ( A  gcd  B ) )  ->  2  ||  1 ) )
381, 37mtoi 178 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( B  /  ( A  gcd  B ) ) )
3938ex 434 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
40 imor 412 . 2  |-  ( ( 2  ||  ( A  /  ( A  gcd  B ) )  ->  -.  2  ||  ( B  / 
( A  gcd  B
) ) )  <->  ( -.  2  ||  ( A  / 
( A  gcd  B
) )  \/  -.  2  ||  ( B  / 
( A  gcd  B
) ) ) )
4139, 40sylib 196 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( -.  2  ||  ( A  /  ( A  gcd  B ) )  \/  -.  2  ||  ( B  /  ( A  gcd  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4447  (class class class)co 6282   0cc0 9488   1c1 9489    / cdiv 10202   NNcn 10532   2c2 10581   ZZcz 10860    || cdivides 13843    gcd cgcd 13999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-dvds 13844  df-gcd 14000
This theorem is referenced by:  pythagtrip  14213
  Copyright terms: Public domain W3C validator