MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivdiv Structured version   Unicode version

Theorem divdivdiv 10142
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divdivdiv  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )

Proof of Theorem divdivdiv
StepHypRef Expression
1 simprrl 763 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  e.  CC )
2 simprll 761 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  e.  CC )
3 simprlr 762 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  =/=  0 )
4 divcl 10110 . . . . . . 7  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( D  /  C )  e.  CC )
51, 2, 3, 4syl3anc 1219 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  /  C )  e.  CC )
6 simpll 753 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  A  e.  CC )
7 simplrl 759 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  e.  CC )
8 simplrr 760 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  B  =/=  0 )
9 divcl 10110 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  e.  CC )
106, 7, 8, 9syl3anc 1219 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  /  B )  e.  CC )
115, 10mulcomd 9517 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  /  C
)  x.  ( A  /  B ) )  =  ( ( A  /  B )  x.  ( D  /  C
) ) )
12 simplr 754 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  e.  CC  /\  B  =/=  0 ) )
13 simprl 755 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  e.  CC  /\  C  =/=  0 ) )
14 divmuldiv 10141 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
156, 1, 12, 13, 14syl22anc 1220 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  x.  ( D  /  C ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
1611, 15eqtrd 2495 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  /  C
)  x.  ( A  /  B ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
1716oveq2d 6215 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) ) )
18 simprr 756 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  e.  CC  /\  D  =/=  0 ) )
19 divmuldiv 10141 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  ( ( D  e.  CC  /\  D  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
202, 1, 18, 13, 19syl22anc 1220 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( D  /  C ) )  =  ( ( C  x.  D )  / 
( D  x.  C
) ) )
212, 1mulcomd 9517 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2221oveq1d 6214 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  x.  D
)  /  ( D  x.  C ) )  =  ( ( D  x.  C )  / 
( D  x.  C
) ) )
231, 2mulcld 9516 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  x.  C )  e.  CC )
24 simprrr 764 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  =/=  0 )
251, 2, 24, 3mulne0d 10098 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( D  x.  C )  =/=  0 )
26 divid 10131 . . . . . . . 8  |-  ( ( ( D  x.  C
)  e.  CC  /\  ( D  x.  C
)  =/=  0 )  ->  ( ( D  x.  C )  / 
( D  x.  C
) )  =  1 )
2723, 25, 26syl2anc 661 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( D  x.  C
)  /  ( D  x.  C ) )  =  1 )
2822, 27eqtrd 2495 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  x.  D
)  /  ( D  x.  C ) )  =  1 )
2920, 28eqtrd 2495 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( D  /  C ) )  =  1 )
3029oveq1d 6214 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B ) )  =  ( 1  x.  ( A  /  B ) ) )
31 divcl 10110 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( C  /  D )  e.  CC )
322, 1, 24, 31syl3anc 1219 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  /  D )  e.  CC )
3332, 5, 10mulassd 9519 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B ) )  =  ( ( C  /  D )  x.  (
( D  /  C
)  x.  ( A  /  B ) ) ) )
3410mulid2d 9514 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
1  x.  ( A  /  B ) )  =  ( A  /  B ) )
3530, 33, 343eqtr3d 2503 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( A  /  B ) )
3617, 35eqtr3d 2497 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( C  /  D
)  x.  ( ( A  x.  D )  /  ( B  x.  C ) ) )  =  ( A  /  B ) )
376, 1mulcld 9516 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  x.  D )  e.  CC )
387, 2mulcld 9516 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  e.  CC )
39 mulne0 10088 . . . . 5  |-  ( ( ( B  e.  CC  /\  B  =/=  0 )  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( B  x.  C
)  =/=  0 )
4039ad2ant2lr 747 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  x.  C )  =/=  0 )
41 divcl 10110 . . . 4  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( B  x.  C
)  =/=  0 )  ->  ( ( A  x.  D )  / 
( B  x.  C
) )  e.  CC )
4237, 38, 40, 41syl3anc 1219 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  x.  D
)  /  ( B  x.  C ) )  e.  CC )
43 divne0 10116 . . . 4  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  /  D
)  =/=  0 )
4443adantl 466 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  /  D )  =/=  0 )
45 divmul 10107 . . 3  |-  ( ( ( A  /  B
)  e.  CC  /\  ( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC  /\  ( ( C  /  D )  e.  CC  /\  ( C  /  D
)  =/=  0 ) )  ->  ( (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) )  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4610, 42, 32, 44, 45syl112anc 1223 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) )  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4736, 46mpbird 232 1  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B  =/=  0 ) )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  (
( A  /  B
)  /  ( C  /  D ) )  =  ( ( A  x.  D )  / 
( B  x.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2647  (class class class)co 6199   CCcc 9390   0cc0 9392   1c1 9393    x. cmul 9397    / cdiv 10103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-po 4748  df-so 4749  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104
This theorem is referenced by:  recdiv  10147  divcan7  10150  divdiv1  10152  divdiv2  10153  divdivdivi  10204  divdivdivd  10264  qreccl  11083  pnt2  22994
  Copyright terms: Public domain W3C validator