MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdenle Structured version   Unicode version

Theorem divdenle 14383
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divdenle  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )

Proof of Theorem divdenle
StepHypRef Expression
1 divnumden 14382 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( (numer `  ( A  /  B ) )  =  ( A  / 
( A  gcd  B
) )  /\  (denom `  ( A  /  B
) )  =  ( B  /  ( A  gcd  B ) ) ) )
21simprd 461 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  =  ( B  /  ( A  gcd  B ) ) )
3 simpl 455 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  A  e.  ZZ )
4 nnz 10847 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  ZZ )
54adantl 464 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  ZZ )
6 nnne0 10529 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  =/=  0 )
76neneqd 2605 . . . . . . . 8  |-  ( B  e.  NN  ->  -.  B  =  0 )
87adantl 464 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  B  =  0 )
98intnand 917 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  -.  ( A  =  0  /\  B  =  0 ) )
10 gcdn0cl 14253 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
113, 5, 9, 10syl21anc 1229 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
1211nnge1d 10539 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  <_  ( A  gcd  B ) )
13 1red 9561 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  1  e.  RR )
14 0lt1 10035 . . . . . 6  |-  0  <  1
1514a1i 11 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  1 )
1611nnred 10511 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  RR )
1711nngt0d 10540 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  ( A  gcd  B ) )
18 nnre 10503 . . . . . 6  |-  ( B  e.  NN  ->  B  e.  RR )
1918adantl 464 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  RR )
20 nngt0 10525 . . . . . 6  |-  ( B  e.  NN  ->  0  <  B )
2120adantl 464 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  0  <  B )
22 lediv2 10395 . . . . 5  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( A  gcd  B )  e.  RR  /\  0  < 
( A  gcd  B
) )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2313, 15, 16, 17, 19, 21, 22syl222anc 1246 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( 1  <_  ( A  gcd  B )  <->  ( B  /  ( A  gcd  B ) )  <_  ( B  /  1 ) ) )
2412, 23mpbid 210 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  ( B  / 
1 ) )
25 nncn 10504 . . . . 5  |-  ( B  e.  NN  ->  B  e.  CC )
2625adantl 464 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  B  e.  CC )
2726div1d 10273 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  1
)  =  B )
2824, 27breqtrd 4418 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  <_  B )
292, 28eqbrtrd 4414 1  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  (denom `  ( A  /  B ) )  <_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   class class class wbr 4394   ` cfv 5525  (class class class)co 6234   CCcc 9440   RRcr 9441   0cc0 9442   1c1 9443    < clt 9578    <_ cle 9579    / cdiv 10167   NNcn 10496   ZZcz 10825    gcd cgcd 14245  numercnumer 14367  denomcdenom 14368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-om 6639  df-1st 6738  df-2nd 6739  df-recs 6999  df-rdg 7033  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-sup 7855  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-n0 10757  df-z 10826  df-uz 11046  df-q 11146  df-rp 11184  df-fl 11879  df-mod 11948  df-seq 12062  df-exp 12121  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-dvds 14088  df-gcd 14246  df-numer 14369  df-denom 14370
This theorem is referenced by:  qden1elz  14391  irrapxlem5  35104
  Copyright terms: Public domain W3C validator