MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcl Unicode version

Theorem divcl 9640
Description: Closure law for division. (Contributed by NM, 21-Jul-2001.) (Proof shortened by Mario Carneiro, 17-Feb-2014.)
Assertion
Ref Expression
divcl  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  e.  CC )

Proof of Theorem divcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 divval 9636 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC ( B  x.  x
)  =  A ) )
2 receu 9623 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
3 riotacl 6523 . . 3  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  ->  ( iota_ x  e.  CC ( B  x.  x )  =  A )  e.  CC )
42, 3syl 16 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( iota_ x  e.  CC ( B  x.  x )  =  A )  e.  CC )
51, 4eqeltrd 2478 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   E!wreu 2668  (class class class)co 6040   iota_crio 6501   CCcc 8944   0cc0 8946    x. cmul 8951    / cdiv 9633
This theorem is referenced by:  reccl  9641  divcan2  9642  divcan1  9643  div23  9653  div12  9656  div11  9660  divsubdir  9666  divmuldiv  9670  divdivdiv  9671  divcan5  9672  divmuleq  9675  divcan6  9677  divdiv32  9678  dmdcan  9680  ddcan  9684  divsubdiv  9686  div2neg  9693  divclzi  9705  divcld  9746  nndivtr  9997  halfcl  10149  sqdiv  11402  cjdiv  11924  absdiv  12055  sinf  12680  efi4p  12693  dvrec  19794  efeq1  20384  efif1olem4  20400  dipcl  22164  spansncol  23023  subfaclim  24827  sinccvglem  25062  axcontlem4  25810  nndivsub  26111  lhe4.4ex1a  27414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634
  Copyright terms: Public domain W3C validator